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1 Exposés

1.1 Sofia Tarricone

Titre : Le diamant Aztèque et son cercle arctique.

Résumé : Dans cet exposé nous allons se pencher sur la question suivante : pour tout entier naturel
n, combien le diamant Aztèque de dimension n admet-il de pavages par des tuiles rectangulaires
de taille 2 × 1 ou 1 × 2 ? La réponse fut donnée par Elkies, Kuperberg, Larsen et Propp en 1992,
via différentes méthodes. Nous nous intéresserons en particulier à la preuve basée sur un algorithme
qui permet de construire des pavages de façon récursive. Cet algorithme est fondamental puisqu’il
permet de représenter des pavages aléatoires (uniformes) d’un diamant Aztèque de tailles assez
grandes et de visualiser le phénomène dit du ≪ cercle arctique ≫.

1.2 Tommaso Rossi

Titre : La géométrie sous-riemannienne du problème de Didon.

Résumé : Le problème de Didon est une version du problème isopérimétrique en R2. On va voir que,
en ajoutant une variable, on peut reformuler ce problème comme celui de trouver les géodésiques
(c’est-à-dire les courbes les plus courtes) d’une variété sous-riemannienne, appelée le groupe de
Heisenberg.

1.3 Virginia Bolelli

Titre : Mathématiques dans la perception visuelle des contours.

Résumé : Dans cet exposé, nous présenterons une approche disciplinaire visant à examiner l’im-
portance des Mathématiques dans la compréhension des mécanismes de la perception visuelle des
contours. En nous appuyant sur les fondements de la théorie psychologique de la Gestalt, nous
étudierons comment les modèles mathématiques contribuent à décrire et interpréter les processus
neuronaux impliqués dans le traitement des informations visuelles relatives aux contours.

1.4 Guillaume Blanc

Titre : Voyage en probabilités : percolation et géométrie aléatoire.

Résumé : On voyagera autour de quelques jolis modèles de deux thèmes centraux en probabilités,
qui sont la percolation et la géométrie aléatoire. Dans son plus simple appareil, la percolation a été
introduite dans la littérature mathématique par Broadbent et Hammersley en 1957, et fait toujours
l’objet de recherches intensives actuellement. Pas si loin de la percolation, la géométrie aléatoire
consiste en l’étude d’espaces métriques aléatoires : des espaces dans lesquels on précise comment
mesurer la distance entre les points, et dont on peut construire naturellement plein d’exemples
probabilistes avec des propriétés riches. Pour les personnes que les mots clés font rêver, on parlera
de percolation par arêtes sur le réseau euclidien, de percolation de premier passage, de processus
de droites dans l’espace euclidien, et de géométrie aléatoire avec des processus de routes. Pour les
personnes que les mots clés effraient, pas de panique ;-)



2 Ateliers

2.1 Un ascenseur pas pratique — Théo Jamin

Vous venez de monter dans un ascenseur possédant seulement 4 boutons :

— un bouton permet de monter de 5 étages,

— un autre permet de descendre de 5 étages,

— un troisième propose de monter de 7 étages,

— et le dernier, de descendre de 7 étages.

On supposera qu’il n’y a pas de limite d’étages en descendant ni en montant.

1. Est-il possible d’aller au 243ème étage avec cet ascenseur ?

2. De manière plus générale, à quel étage peut-on se rendre ?

3. Que se passe-t-il si je change 5 par 11 et 7 par 17 ? Ou encore par n et m ?

4. Pouvez-vous trouver un algorithme pour se rendre (si cela est possible) à l’étage ℓ ?

5. Si l’on impose que l’ascenseur ne peut plus descendre en dessous du rez-de-chaussée ?

2.2 Une lettre d’Euler — Théo Jamin

Vous avez reçu une lettre d’Euler. Malheureusement, vous venez de faire tomber votre café dessus... Vous l’ouvrez et
découvrez qu’une partie est illisible. Vous lisez

J’ai trouvé une élégante formule qui relie le nombre de sommets s, de faces f et d’arêtes a de n’importe quel polyèdre
convexe de l’espace :

s− a+ f = 2.

En voici une élégante démonstration :
*** Tache de café ***

Pourriez-vous imaginer une preuve que vous pourriez transmettre à la communauté mathématique ?

2.3 Un passager anarchiste — Théo Jamin

Un avion a des places numérotées de 1 à n, avec n un entier naturel. Le jour de l’embarquement, toutes les places ont
été attribuées à un passager et les passagers se présentent dans l’ordre de leurs numéros de siège. Le premier passager, ne
respectant pas les règles, s’assoit au hasard (il est possible qu’il s’assoie à sa place attitrée). Les passagers suivants s’assoient
à leur place attitrée si elle est libre et sinon s’assoient au hasard.

1. Pour n = 2, 3 ou 4, déterminer la probabilité que le dernier passager puisse s’asseoir à sa place.

2. Déterminer cette probabilité pour n quelconque.

2.4 Un jeu dangereux — Théo Jamin

Vous participez à un jeu dans lequel, à chaque fois qu’une personne est touchée elle est éliminée. Vous êtes disposés en
cercle et on vous attribue un numéro de 1 à n (pour n le nombre de joueurs) dans le sens des aiguilles d’une montre. Le
premier joueur touche la personne suivante, qui est donc éliminée. Le joueur suivant fait de même et le jeu continue jusqu’à
ce qu’il n’y ait plus qu’un joueur restant qui est déclaré vainqueur. Trouver un critère pour choisir votre place en fonction
du nombre de joueurs n.

2.5 Le chat et la souris — Théo Jamin

Vous êtes dans votre jardin et vous venez de voir une souris tomber dans votre piscine (tout à fait ronde). Votre chat,
comme tous les chats, aime les souris mais a horreur de l’eau. Vous notez que votre chat se déplace quatre fois plus vite
que la souris.



1×
4×

La question que vous vous poser est donc la suivante : la souris réussira t-elle à sortir de la piscine sans se faire attraper
par le chat ?

2.6 Les maisons de Dudeney — Théo Jamin

Trois familles voisines se détestant mutuellement ont besoin d’eau, d’électricité et de gaz et doivent donc accéder quand
elles le veulent aux trois usines. Vous êtes le maire de la ville où habitent ces familles. Elles vous demandent de l’aide
pour l’accès aux usines et expliquent qu’elles souhaitent que vous construisiez les routes d’accès de chacune des maisons à
chacune des usines, cependant, elles ne doivent pas se croiser pour éviter tout problème. Avez-vous une solution ? Que se
passe t-il si les familles habitent sur une autre planète possédant une géométrie différente de celle de la terre ?

Peut-être que le groupe ayant reçu la lettre d’Euler pourra vous aider...

2.7 Parcours eulériens de graphes — Pablo Jiménez

On cherche à dessiner une une forme comme celle-ci sans lever le crayon du papier, et sans passer deux fois par la même
arête. Arrivez-vous à le faire sur le dessin de gauche ? Et celui de droite ? On appelle un tel chemin un parcours eulérien du
graphe G en question. En étudiant le nombre d’arêtes qui sortent de chaque sommet, ce qu’on appelle le degré du sommet,
trouvez une façon de différencier les graphes qui admettent un parcours eulérien de ceux qui n’en ont pas.

2.8 Le jeu de Marienbad — Pablo Jiménez

Le jeu de Marienbad se joue à deux : des allumettes sont disposées en quatre rangs de 1, 3, 5 et 7. Chaque joueur prend
alors à son tour le nombre d’allumettes qu’il souhaite dans une seule rangée. Le gagnant est celui qui prend la dernière
allumette.

A A

B

Etc...

L’un des deux joueurs a-t-il une stratégie gagnante ? Et si on modifie les règles ?

2.9 Exercice du séminaire sur les pavages de A(n) — Sofia Tarricone

Soit AD(n;x, q) la fonction de comptage des pavages de A(n) raffinés

AD(n;x, q) =
∑

P pav. A(n)

∏
d∈P

xv(d)qr(d) (1)



où

v(d) =

{
1
2 , si d est verticale,

0, si d est horizontale.
r(d) =

{
(−1)i+j+n(i+ n+ 1), si d est verticale,

0 si d est horizontale.
(2)

En supposant que les fonctions aux niveaux n et n− 1 soient liées par la relation

AD(n;x, q) = (1 + xq)nAD(n− 1;xq2, q), (3)

prouver, par récurrence sur n, la formule

AD(n;x, q) =

n−1∏
k=0

(1 + xq2k+1)n−k. (4)

2.10 Compter les chemins de Dyck — Sofia Tarricone

Problème

Un chemin de Dyck de semi-longueur n ∈ N est un chemin dans le réseau N2 partant en (0, 0) et arrivant en (2n, 0) où
les seuls pas admis sont (1, 1) i.e. ↗ et (1,−1) i.e. ↘. Des exemples sont donnés en Figure 2.

(0, 0) (16, 0)

Figure 2 – Deux chemins de Dyck de sémi-longeur n = 8.

Prouver que le nombre de chemins de Dyck de sémi-longuer n est donné par le nombre de Catalan

catn =
1

n+ 1

(
2n

n

)
(5)

Curiosité

Les nombres de Catalan comptent beaucoup d’objets combinatoires, pour la liste complète voir ...
Avant de voir la preuve, nous faisons le calculs pour les premiers n, voir Figure 3.

— Pour n = 1, il y a un seul chemin de Dyck
{(↗,↘)}.

— Pour n = 2, il y a deux chemins de Dyck

{(↗,↗,↘,↘) , (↗,↘,↗,↘)}.

— Pour n = 3, il y a cinq chemins de Dyck

{(↗,↗,↗,↘,↘,↘) , (↗,↗,↘,↗,↘,↘) , (↗,↗,↘,↘,↗,↘) , (↗,↘,↗,↗,↘,↘) (↗,↘,↗,↘,↗,↘)}.

(0, 0) (2, 0) (0, 0) (4, 0) (0, 0) (6, 0)

Figure 3 – Tous les chemins de Dyck pour n = 1, 2, 3.

Pour prouver le résultat, il y a 5 étapes principales à suivre, qui peuvent être considérées comme suggestions.

Étape 1

Voir que le comptage des chemins de Dyck est équivalent au comptage des chemins dans le réseau N2 partent en (0, 0)
et arrivant en (n, n) dit up-right et qui reste au-dessus de la diagonale.



Étape 2

Compter toutes les possibles chemins dans le réseau N2 partent en (0, 0) et arrivant en (n, n) dit up-right (sans contrainte
sur la diagonale) et voir que ils sont (

2n

n

)
(6)

Étape 3

Pour tout n nous notons un le nombre de chemins dans le réseau N2 partent en (0, 0) et arrivant en (n, n) dit up-right
et qui reste au-dessus de la diagonale. Parmi ces chemins, nous notons vn ceux qui ne touchent jamais la diagonale avant
le point (n, n).

i) Prouver que pour tout n > 1, nous avons
vn = un−1.

ii) Prouver que les un satisfont la récurrence suivante (en décomposant les chemins par rapport au dernier point de la
diagonale touché par le chemin avant (n, n) et le point précédent)

un = u0un−1 + u1un−2 + u2un−3 + · · ·+ un−1u0, avec u0 = 1. (7)

Étape 4

Considérer la fonction génératrice des un définie comme la série formelle :

u(x) =
∑
n≥0

unx
n. (8)

Prouver qu’elle satisfait l’équation
x(u(x))2 − u(x) + 1 = 0. (9)

Étape 5

Prouver que un = catn : résoudre d’abord l’équation (9) pour u et utiliser ensuite l’expansion du binôme généralisé dans
l’expression pour u obtenue ainsi.

Pour tout α ∈ R, k ∈ N on pose (
α

k

)
=

α(α− 1)(α− 2) . . . (α− k + 1)

k!

et

(2k − 1)!! =
(2k)!

2kk!
(10)

2.11 Flot de champs de vecteurs — Tommaso Rossi

En Rn, soient X,Y deux champs des vecteurs lisses. On note par etX : Rn → Rn le flot de X, c’est-à-dire que etX est
tel que, pour chaque q ∈ Rn, la fonction R ∋ t 7→ etX(q) satisfait le problème suivant :{

γ̇(t) = X(γ(t)), ∀ t ∈ R,
γ(0) = q ∈ Rn.

(11)

Montrer que, lorsque t → 0,
etX ◦ etY ◦ e−tX ◦ e−tY (q) = q + t2[X,Y ](q) + o(t2). (12)

Indication : montrer que la suivante expansion asymptotique est valide lorsque t → 0

etX(q) = q + tX(q) +
t2

2
X2(q) + o(t2). (13)

2.12 Quel est le nombre de facteurs premiers d’un grand entier aléatoire uniforme ? —
Guillaume Blanc

Pour tout n ∈ N∗, on note ω(n) le nombre de facteurs premiers de l’entier n, comptés sans multiplicité. Par exemple,
on a ω(2) = 1 et ω(4) = 1 (on convient que ω(1) = 0). À défaut d’avoir une formule explicite pour ω(n), on cherche à
comprendre le comportement de la fonction ω. Pour cela, voici des pistes que vous pouvez explorer.

— Calculer les premières valeurs de ω(n).



— Quelles valeurs peut prendre ω(n) ?

— Quel est le nombre moyen de facteurs premiers d’un grand entier aléatoire uniforme ?

— Quel est le nombre “typique” de facteurs premiers d’un grand entier aléatoire uniforme ?

Pour vous aider, vous pouvez considérer les affirmations suivantes.

• Si Xn est une variable aléatoire de loi uniforme sur J1, nK, alors pour tout k ∈ J1, nK, on a

P(Xn = k) =
1

n
.

Plus généralement, quelle que soit A ⊂ J1, nK, on a

P(Xn ∈ A) =
#A

n
.

• Pour toute fonction f : J1, nK → R, on définit l’espérance de f(Xn) par

E[f(Xn)] =

n∑
k=1

f(k) · P(Xn = k) =
1

n
·

n∑
k=1

f(k).

Intuitivement, c’est la valeur moyenne de f(k) pour un entier k tiré uniformément au hasard entre 1 et n. Si f et g
sont des fonctions de J1, nK dans R, et si λ et µ sont des réels, alors

E[λ · f(Xn) + µ · g(Xn)] = λ · E[f(Xn)] + µ · E[g(Xn)].

• On peut écrire
ω(Xn) = Bn

p1
+ . . .+Bn

pk
,

où p1 < . . . < pk sont les nombres premiers p ≤ n, et Bn
p est la variable aléatoire qui vaut 1 si p divise Xn, et 0 sinon.

• Pour toute fonction f : J1, nK → R, on définit la variance de f(Xn) par

V(f(Xn)) = E
[
(f(Xn)− E[f(Xn)])

2
]
.

Intuitivement, la variance mesure l’écart à la moyenne. En développant le carré, on peut aussi écrire

V(f(Xn)) = E
[
f(Xn)

2
]
− E[f(Xn)]

2.

• Pour tout α > 0, on a

P (|f(Xn)− E[f(Xn)]| ≥ α) ≤ V(f(Xn))

α2
.

Pour faire sens du membre de gauche, remarquez qu’on peut l’écrire P(Xn ∈ A), avec

A = {k ∈ J1, nK : |f(k)− E[f(Xn)]| ≥ α} .

• On a ∑
p≤n

1

p
= ln lnn+O(1) lorsque n → ∞,

où la somme porte sur les nombres premiers p ≤ n.

2.13 Quelle est la probabilité que deux grands entiers aléatoires uniformes indépendants
soient premiers entre eux ? — Guillaume Blanc

Pour tous m,n ∈ N∗, on dit que m et n sont premiers entre eux si leur seul diviseur commun est 1, ou de manière
équivalente, s’il n’existe pas de nombre premier p qui divise m et n. Quelle est la probabilité que deux grands entiers
aléatoires uniformes indépendants soient premiers entre eux ?

Pour vous aider, vous pouvez considérer les affirmations suivantes.

• Si Xn et Yn sont deux variables aléatoires indépendantes de loi uniforme sur J1, nK, alors pour tous i, j ∈ J1, nK, on a

P(Xn = i ; Xn = j) =
1

n2
.

Plus généralement, quelle que soit A ⊂ J1, nK2, on a

P((Xn, Yn) ∈ A) =
#A

n2
.



• Pour toute fonction f : J1, nK2 → R, on définit l’espérance de f(Xn, Yn) par

E[f(Xn, Yn)] =
∑

1≤i,j≤n

f(i, j) · P(Xn = i ; Yn = j) =
1

n2
·

∑
1≤i,j≤n

f(i, j).

Intuitivement, c’est la valeur moyenne de f(i, j) pour deux entiers i et j tirés indépendemment et uniformément au
hasard entre 1 et n. Si f et g sont des fonctions de J1, nK2 dans R, et si λ et µ sont des réels, alors

E[λ · f(Xn, Yn) + µ · g(Xn, Yn)] = λ · E[f(Xn, Yn)] + µ · E[g(Xn, Yn)].

Si f et g sont des fonctions de J1, nK dans R, alors

E [f(Xn) · g(Yn)] = E [f(Xn)] · E [g(Yn)] .

• On peut écrire
P(Xn et Yn sont premiers entre eux) = E

[(
1−Bn

p1

)
· . . . ·

(
1−Bn

pk

)]
,

où p1 < . . . < pk sont les nombres premiers p ≤ n, et Bn
p est la variable aléatoire qui vaut 1 si p divise Xn et Yn, et 0

sinon. Pour faire sens du membre de gauche, remarquez qu’on peut l’écrire P((Xn, Yn) ∈ A), avec

A =
{
(i, j) ∈ J1, nK2 : i et j sont premiers entre eux

}
.

Pour faire sens du membre de droite, remarquez qu’on peut l’écrire E[f(Xn, Yn)] pour une certaine fonction f :
J1, nK2 → R. En développant le produit, on obtient l’expression

P(Xn et Yn sont premiers entre eux) =

k∑
j=0

(−1)j ·
∑

1≤i1<...<ij≤k

E
[
Bn

pi1
· . . . ·Bn

pik

]
.

• Si p et q sont des nombres premiers distincts, alors p divise n et q divise n si et seulement si pq divise n.

• On a ∏
p≤n

(
1− 1

p2

)
−→ 6

π2
lorsque n → ∞,

où le produit porte sur les nombres premiers p ≤ n.

2.14 Résolution de l’Équation Logistique avec la Méthode d’Euler — Virginia Bolelli

Considérez l’équation différentielle logistique, un type d’équation qui décrit la croissance d’une population limitée par
les ressources disponibles. Sa forme générale est :{

dP
dt = r · P ·

(
1− P

K

)
pour t ∈ [t0, tF ]

P (t0) = P0

Où :

— P est la population en fonction du temps t.

— r est le taux de croissance de la population : une mesure indiquant à quelle vitesse une population augmente dans le
temps.

— K est la capacité de charge de l’environnement : elle représente le nombre maximal d’individus d’une population
qui peuvent être soutenus sans causer de dommages à l’écosystème ou sans dépasser la capacité de régénération des
ressources naturelles.

Exercices proposés :

— Implémentez un algorithme pour la résoudre numériquement.

— Analyse des paramètres :

— Comment la capacité de charge K affecte-t-elle la croissance de la population ?

— Quelles sont les implications d’avoir un taux de croissance r négatif ?

— Comment le comportement de la population varie-t-il en fonction de K et r ?



Step1 : Méthode d’Euler Explicite pour les EDOs

- Dérivée comme limite du rapport d’incrément :

dP

dt
= P ′(t) = lim

h→0

P (t+ h)− P (t)

h
.

(Ou Taylor ?)

- Si h est suffisamment pétit :

- Introduction à l’algorithme : on commence avec t0 et t1 = t0 + h :

P (t1) = P (t0) + h · P ′(t0).

On généralise : {
P (tj+1) = P (tj) + h · P ′(tj)

P (t0) = P0

Step 2 : Implémentation du Code (en Python ?)

Comment implémenter le code ?

— Choix de h :

h =
tF − t0

N
,

où N est le nombre de pas que je veux faire pour passer du point initial au point final.

— Pseudocode :

# Définition de l’équation logistique

def logistic_eq(P, r, K) :

return r * P * (1 - (P / K))

#Méthode d’Eulero pour résoudre l’équation différentielle :

def euler_method(func, P0, r, K, h, n):

P_values = [P0]

for i in range(n):

P_new = P_values[-1] + h * func(P_values[-1], r, K)

P_values.append(P_new)

return P_values

#Appel de l’algorithme :

K = 1;

r = 0.5;

t0 = 0;

tf = 100;

P0 = 0;

N = 50;

h = (tf-t0)/N;

P = euler_method(logistic_eq, P0, r, K, h, n)

{
P (j + 1) = P (j) + h · r · P ·

(
1− P

K

)
pour j = 1 . . . N − 1

P (1) = P0

Step 3 : Analyse des résultats

Questions à poser :

- Si on augmente le nombre de pas N , alors h devient plus petit. Comment cela affecte-t-il le résultat de la solution ?
Comparer avec la solution exacte, donnée par :

P (t) =
KP0e

rt

K + P0 (ert − 1)

- Analyse du comportement de l’équation lorsque les paramètres K et r changent
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Le diamant Aztèque

Soit n ∈ N∗ fixé.

A(n), le diamant Aztèque de taille n, est la
figure géometrique du plan obtenue en
considérant tout les carrés
[a, a + 1]× [b, b + 1] , a, b ∈ Z contenus
dans le diamant

{(x , y) ∈ R2 t.q: |x |+ |y | ≤ n + 1}.

x

y

2

2

A(1)

Remarque Le nombre de carrés dans A(n) est donné par

4
n∑

k=1

k = 2n(n + 1).
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Le diamant Aztèque

Soit n ∈ N∗ fixé.

A(n), le diamant Aztèque de taille n, est la
figure géometrique du plan obtenue en
considérant tout les carrés
[a, a + 1]× [b, b + 1] , a, b ∈ Z contenus
dans le diamant

{(x , y) ∈ R2 t.q: |x |+ |y | ≤ n + 1}.

x

y

3

3 A(2)

Remarque Le nombre de carrés dans A(n) est donné par

4
n∑
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k = 2n(n + 1).
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Les pavages
Nous considérons des dominos rectangulaires de tailles 2 × 1 ou 1 × 2

Un pavage de A(n) est un ensemble de tels dominos tel que :

• A(n) est entièrement recouvert par les dominos;

• les dominos ne se superposent pas.

Exemple Les pavages horizontaux pour n = 1 et 2.

Nous définissons an = #{pavages de A(n)}.

Problème de combinatoire enumerative
Pour chaque n, combien vaut an ?
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Les premiers calculs

Pour n = 1 nous avons exactement 2 pavages possibles, a1 = 2.

flip
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Les premiers calculs

Pour n = 1 nous avons exactement 2 pavages possibles, a1 = 2.

flip

Pour n = 2 nous avons exactement 8 pavages possibles, a2 = 8 = 23.

1flip 2flips

3flips 4flips 5flips
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Lien avec les modèles de dimers

Les pavages de A(n) sont en bijection avec les couplages parfaits du graphe planaire
associé (par dualité) à A(n).

L’ensemble des couplages parfaits d’un graphe donné est appelé modèle de dimers.
Le modèle de dimers pour un sous-graphe rectangulaire de Z2 est connu depuis les
travaux de Kenyon des années ’60.

Remarque Les modèles de dimers sont considérés comme des modèles de physique
statistique, ils modélisent la répartition de molécules di-atomiques à la surface d’un
cristal.
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Bijection avec les chemins de Schroder non-intersectant

En 2004 Eu et Fu ont prouvé que les pavages de A(n) sont en bijection avec
l’ensemble des n-uplets (π1, . . . , πn) de grand chemins de Schroder tels que

• pour tout i ̸= j , πi et πj ne s’intersectent pas;

• Pour i = 1, . . . , n chaque

πi va dès (−2i + 1, 0) à (2i − 1, 0).

From A simple proof of the Aztec diamand theorem by Eu et Fu.
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Outline

1 Les pavages du diamant Aztèque

2 Compter les pavages

3 A quoi ressemble un pavage aléatoire ?
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Le résultat de Elkies, Kuperberg, Larsen et Propp
Pour x , q ∈ R+ des paramètres, nous avons la fonction qui compte les pavages raffinés

AD(n; x , q) =
∑

P pav. A(n)

∏
d∈P

xv(d)qr(d),

où pour chaque domino d dans un pavage de A(n), nous définissons les fonctions

v(d) =

{
1
2 , si d est verticale,
0, si d est horizontale.

r(d) =

{
(−1)i+j+n(i + n + 1), si d est verticale,
0 si d est horizontale.

Remarque AD(n; x = 1, q = 1) =
∑

P pav. A(n) 1 = an.

Théorème (Elkies, Kuperberg, Larsen, Propp, 1992)

Pour tout n, la fonction AD(n; x , q) est donnée par

AD(n; x , q) =
n−1∏
k=0

(1 + xq2k+1)n−k

Corollaire Pour tout n, le nombre de pavages de A(n) correspond à

an = 2
n(n+1)

2
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Idée de la preuve

Lemme Les fonctions qui comptent les pavages raffinés de taille n et n − 1 sont liés
par la relation

AD(n; x , q) = (1 + xq)nAD(n − 1; xq2, q).

↓

Par induction sur n, en utilisant cette relation, la formule explicite pour AD(n; x , q) est
ensuite prouvée (voir atelier).

Remarque Pour x = q = 1 nous avons que

an = 2nan−1.

L’idée fondamentale derrière cette formule est de pouvoir construire de façon recursive
des pavages de taille n à partir d’un pavage de taille n − 1.
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Algorithme de Shuffling
Pour un pavage donné de A(n − 1), nous construisons un pavage de A(n).

• A partir du point au milieu du sommet de A(n − 1), nous marquons tous les points
du réseau à distance paire de celui ci.

• Sur chaque domino, nous posons une flèche, en direction du point marqué du
réseau qui tombe au mileu de son coté de taille 2.

• Nous regardons tout les carrés de taille 2 × 2 dans A(n − 1) : si un est composé
de deux dominos ayant des flèches en direction du meme point nous éliminons les
dominos, ce sont des mauvais paires.

• Nous mouvons simultanéamont en direction de leur flèche tout les autres dominos
de un.

!!! Les dominos sont ainsi placés à l’intérieure de A(n). La place vide laissée est
composée de

2n(n + 1)− 2n(n − 1) = 4n

carrés disposés en n carrés de taille 2 × 2.

• Nous rémplissons ces derniers avec n bon paires de dominos, en prénant une
paire verticale ou horizontale avec probabilité 1/2.

https://fedimser.github.io/adt/adt.html
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Outline

1 Les pavages du diamant Aztèque

2 Compter les pavages

3 A quoi ressemble un pavage aléatoire ?
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Génération aléatoire de pavages de grande taille

Remarque L’algorithme de shuffling permet d’engendrer des pavages aléatoires
uniformes, i.e. tels que pour tout n chaque pavage peut apparaître avec probabilité

1
2n(n+1)/2 .
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Génération aléatoire de pavages de grande taille
Remarque L’algorithme de shuffling permet d’engendrer des pavages aléatoires
uniformes, i.e. tels que pour tout n chaque pavage peut apparaître avec probabilité

1
2n(n+1)/2 .

Pourtant, les images que nous obtenions n’ont pas vraiment l’air aléatoire...

Images générées par Antoine Doeraene https://sites.uclouvain.be/aztecdiamond/domino-shuffling-implementation.html
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Le théorème du cercle articque

Le cercle inscrit dans le diamant Aztèque divise

• la zone gelée, donnée par les quatres coins du diamant, dans lesquels il y a un
unique type de domino,

• la zone témperée, où tous les types de dominos apparaissent.

Et ce phénomène arrive avec probabilité qui tend vers 1 lorsque n tend vers l’infini.

Théorème (Jockusch, Propp, Shor, 1995)
Soit ϵ > 0. Pour tout n assez grand, tous sauf une fraction ϵ des pavages de A(n)
aurant une zone témperée dont la frontière reste uniformement à distance ϵn de
l’interieur du cercle inscrit.
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Merci de votre attention !
Je vous attend à l’atelier...
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La reine Didon

Au debut de 9ème siecle A.C nâıt

Didon, princesse de Tyr (actuel

Liban).

∼ 820 A.C. : Au mort du roi de Tyr,

son frère Pygmalion assassine son

époux afin de prendre le pouvoir.

Didon, avec une suite nombreuse,

s’enfuit vers l’Afrique du Nord.

814 A.C. : Didon atteint Byrsa

(proche de l’actuel Tunis) et

demande asile aux autochtones. Elle

obtient pacifiquement des terres

pour s’y établir, par un accord avec

le seigneur local. Mais, on ne lui

concède que ce que pourrait couvrir

la peau d’un bœuf.

Figure: Didon abandonnée - A. Sacchi

1599–1661
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La construction de Chartage - 814 A.C.

Didon découpe la peau en si fines lanières qu’elle obtient, bout à bout, une corde de

longueur de près de 4 km. Avec la corde ainsi formée, elle encercle son territoire et

fonde la très célèbre ville de Carthage.

Figure: Carte de la Carthage punique (coloriée en gris)
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Le problème de Didon

En formant un arc de cercle plutôt qu’un triangle, un rectangle, un carré ou tout autre

forme géométrique sans point double, Didon avait donc admis la solution au problème

isopérimétrique suivant :

Soit L une ligne donnée. De toutes les courbes, sans points double, dont les points initial

et final sont sur L, et de longueur donnée, trouver celle qui (avec L) entoure l’aire la plus

grande.

L

c

Mar méditerrannée Mer Méditerranée 

L

c

Mar méditerrannée Mer Méditerranée 

Figure: Les deux courbes ont la même longueur, mais l’aire entourée par la seconde est plus

grande. Ici, L représente le littoral méditerranéen.
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Tommaso Rossi La géométrie sous-riemannienne du problème de Didon Mars 14, 2024 4 / 11



La formalisation du problème de Didon

Soit L = {y = 0} l’axe des x et soit ℓ ∈ (0,+∞). Le problème de Didon est un problème

de maximisation sous contrainte : trouver une courbe c : [0, 1] → R2 telle que
c(0), c(1) ∈ L,

Longeur de c = ℓ;

Aire obtenue entre c et L −→ max

(D)

De manière explicite, soit c(t) = (x(t), y(t)) une paramétrisation de la courbe telle que

(x(0), y(0)) = (0, 0). Alors, on a :

L

c

x

y

Ω

Figure: La région Ω a comme

contour c et L.

ℓ(c) =

ˆ 1

0

√
ẋ2(s) + ẏ 2(s) ds;

A (c) =

ˆ
Ω

dx dy =
1

2

ˆ 1

0

(x(s)ẏ(s)− ẋ(s)y(s)) ds.
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La solution du problème de Didon - I

On utilise des téchniques de calcul des variations pour trouver la solution à (D):

1 On suppose que c est une solution à (D) : c : [0, 1] → R2 est une courbe telle que

c(0) = (0, 0), c(1) ∈ L et

A (c) = max
c̃

A (c̃) sous la contrainte ℓ(c) = ℓ,

2 Alors c est point critique de la fonction lagrangienne de ce problème, donnée par

L (x(s), y(s), ẋ(s), ẏ(s)) :=
1

2
(x(s)ẏ(s)− ẋ(s)y(s))︸ ︷︷ ︸

intégrande de A (·)

+λ
√

ẋ2(s) + ẏ 2(s)︸ ︷︷ ︸
intégrande de ℓ(·)

,

où λ ≥ 0 est le multiplicateur de Lagrange.

Xmin

Xmax

f(x)

0.5 1.0 1.5

-2

-1

1

2

La fonction f a deux points critiques xmin et

xmax. Ils sont tels que

f ′(xmin) = f ′(xmax) = 0.
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La solution du problème de Didon - II
3 Comme c est point critique de L , on a :

∇L (c) = 0 ⇝ équations d’Euler-Lagrange.

4 Nous résolvons les équations d’Euler-Lagrange associées à L et nous obtenons qu’ils

existent deux constantes C1,C2 ∈ R telles que

d

dt

[
(x(t)− C1)

2 + (y(t)− C2)
2
]
= 0.

Donc, on trouve une constante R > 0 telle que

(x(t)− C1)
2 + (y(t)− C2)

2 = R2.

(0,0)

(C1,C2)

c(1)

R R

x

y

⇝ Cela signifie que c(t) = (x(t), y(t))

paramètre un arc de cercle de centre

(C1,C2) et rayon R.
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Relever le problème dans R3 - I

But : “relever” le problème de Didon dans R3 et définir la structure géométrique associée

à ce problème.

Soit c : [0, 1] → R2 avec composantes c(t) = (x(t), y(t)) et supposons c(0) = (0, 0),

c(1) = (x1, y1). On rappel que

A (c) =
1

2

ˆ 1

0

(ẏ(s)x(s)− ẋ(s)y(s)) ds

Ensuite, nous pouvons relever le problème dans R3, en définissant la composante

additionnelle de c comme suit

z(t) := A
(
c|[0,t]

)
=

1

2

ˆ t

0

(ẏ(s)x(s)− ẋ(s)y(s)) ds.

La courbe γ(t) := (x(t), y(t), z(t)) a la propriété que z(t) est l’aire de la région dans R2

délimitée par la projection (x(s), y(s)) et la ligne passant par l’origine et (x(t), y(t)) .

⇝ Cette procédure nous permet de définir une géométrie non-euclidienne sur R3.
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Relever le problème dans R3 - II

(0,0)

c(t)

x

y

c

A(c [0,t])

Figure: Une courbe quelconque en R2 est relevée uniquement à une courbe en R3.
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Relever le problème dans R3 - III

(0,0)

c(t)

x

y

c

A(c [0,t])

Figure: Un arc de cercle est relevé à un morceau de spirale.
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Le groupe de Heisenberg - I

Nous définissons une géométrie non-euclidienne sur R3. Considérons la famille de plans

donnée par

D(x,y,z) := span {X (x , y , z),Y (x , y , z)} ,
où X et Y sont deux vecteurs dans R3 définis par

X (x , y , z) :=

 1

0

− y
2

 , Y (x , y , z) :=

0

1
x
2

 .

D est appelée distribution et elle a toujours dimension 2.

Figure: La distribution au points du plan {z = 0}.
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Le groupe de Heisenberg - II

Nous définissons un produit scalaire ⟨·, ·⟩ sur D, en déclarant X et Y orthonormés. Donc,

pour tout v ,w ∈ D(x,y,z), on a

v = v1X (x , y , z) + v2Y (x , y , z), w = w1X (x , y , z) + w2Y (x , y , z),

ainsi que

⟨v ,w⟩ = v1w1 + v2w2

On ne peut calculer le produit scalaire que pour les vecteurs sur D.

Par exemple, le vecteur (0, 0, 1)T n’appartient pas à D et donc on ne peut pas évaluer sa

norme.

Définition. Le groupe de Heisenberg H est R3 équipé de la distribution D et du produit

scalaire ⟨·, ·⟩ sur D.

⇝ Le groupe de Heisenberg est un exemple de géométrie sous-riemannienne.
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Les courbes admissibles en H - I

Définition. Nous disons qu’une courbe γ : [0, 1] → R3 est admissible, si et seulement si

elle est tangente à Dγ(t), c’est-à-dire :

γ̇(t) ∈ Dγ(t), ∀ t ∈ [0, 1].

Figure: Une courbe admissible est tangente à la distribution

Rappel que le produit scalaire n’est défini que sur la distribution.

On ne peut que évaluer la vitesse des courbes admissibles!
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Les courbes admissibles en H - II

Soit maintenant c : [0, 1] → R2 et soit γ : [0, 1] → R3 son relèvement. Alors, γ(t) est

admissible. En effet, on a pour tout t ∈ [0, 1] :

γ̇(t) =

(
ẋ(t), ẏ(t),

1

2
(ẏ(t)x(t)− ẋ(t)y(t))

)
= ẋ(t)X (γ(t)) + ẏ(t)Y (γ(t)).

Une courbe est admissible si et seulement si elle est le relèvement d’une courbe

c : [0, 1] → R2 dans R3.

En rappelant que X ,Y sont orthonormés, la vitesse de γ(t) = (x(t), y(t), z(t)) est

⟨γ̇(t), γ̇(t)⟩
1
2 =

√
ẋ2(t) + ẏ 2(t).

Alors, la longeur d’une courbe admissible γ en H est la même que celle de sa projection c

en R2, notamment :

ℓH(γ) =

ˆ 1

0

√
ẋ2(t) + ẏ 2(t) dt = ℓ(c).

ℓR3(γ) =
´ 1
0

√
ẋ2(t) + ẏ 2(t) + ż2(t) dt ̸= ℓH(γ).
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La géométrie sous-riemannienne du problème de Didon

Théorème

Une courbe admissible γ : [0, 1] → H, γ(t) = (x(t), y(t), z(t)) est la courbe la plus

courte de γ(0) = (0, 0, 0) à γ(1) = (x(1), y(1), z(1)) dans H si et seulement si sa

projection c(t) = (x(t), y(t)) est la solution du problème (dual) de Didon pour les

courbes joignant (0, 0) et c(1) = (x(1), y(1)) avec une aire donnée de z(1).

Le problème dual de Didon : soit L une ligne donnée. De toutes les courbes, sans

points doubles, dont les points initial et final sont sur L, et telle que elle entoure une

aire donnée, trouver la plus courte.

Les courbes les plus courtes entre deux points donnés sont appelées géodésiques.

Dans R3, les géodésiques sont des lignes droites. Dans la géométrie non-euclidienne

de H, les géodésiques sont spirales.

Alors, le théorème dit que :

Géodésiques dans H ⇐⇒ Solutions au problème de Didon

Tommaso Rossi La géométrie sous-riemannienne du problème de Didon Mars 14, 2024 11 / 11



Merci pour l’attention !

Figure: La boule unité du groupe de Heisenberg
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Introduction

Au programme

1 Percolation par arêtes dans Zd

2 Percolation de premier passage

3 Géométrie aléatoire avec des processus de Poisson de routes
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Introduction aux probabilités

Brève histoire des probabilités

Théorie mathématique née de la modélisation de phénomènes aléatoires
(e.g, jeux de hasard).

Quelques dates clés :

• Correspondance entre Pascal et Fermat autour des problèmes de dés
du chevalier de Méré (1654).

• Théorie de la mesure, intégration de Lebesgue (1901).

• Axiomatique de Kolmogorov (1933).

Une façon de définir la discipline : étude des variables aléatoires.
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Introduction aux probabilités

Variables aléatoires

Soit E un ensemble. Une variable aléatoire à valeurs dans E est une
fonction X d’un ensemble “abstrait” Ω vers E .

Plutôt que de voir X comme la fonction ω ∈ Ω↦ X (ω), on voit X comme
un élément “aléatoire” de E , et on considère les probabilités P(X ∈ B),
pour B ⊂ E .

Conformément à l’intuition, ces nombrent vérifient :

• P(X ∈ B) ∈ [0,1] pour tout B ⊂ E ,

• P(X ∈ ∅) = 0 et P(X ∈ E) = 1,

• si B1,B2 ⊂ E sont disjoints, alors

P(X ∈ B1 ⊔B2) = P(X ∈ B1) + P(X ∈ B2).

Ils caractérisent la loi de X .
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Introduction aux probabilités

Variables aléatoires

Pour travailler avec une variable aléatoire X , on commence par définir sa
loi en prescrivant les probabilités P(X ∈ B), pour B ⊂ E .

Pour n’importe quelle fonction µ ∶ B ⊂ E ↦ µ(B) ∈ [0,1] qui vérifie :

• µ(∅) = 0 et µ(E) = 1,

• si B1,B2 ⊂ E sont disjoints, alors

µ(B1 ⊔B2) = µ(B1) + µ(B2),

on peut construire une variable aléatoire X de loi µ, i.e, telle que
P(X ∈ B) = µ(B) pour tout B ⊂ E .
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Introduction aux probabilités

Exemple

E est un ensemble fini, et

µ(B) =

#B

#E
pour tout B ⊂ E .

Si X est une variable aléatoire de loi µ, alors

P(X = x) = µ{x} =
1

#E
pour tout x ∈ E .

On dit que X est de loi uniforme sur E .

• Lorsque E = {1, . . . ,6}, on peut penser à X comme le résultat d’un
tirage de dé.

• Lorsque E = {0,1}, on peut penser à X comme le résultat d’un tirage
à pile ou face.
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Introduction aux probabilités

Exemple

E = {0,1}, et

µ(∅) = 0, µ{1} = p, µ{0} = 1 − p, et µ{0,1} = 1,

où p ∈ [0,1] est un paramètre.

Si X est une variable aléatoire de loi µ, alors

P(X = 1) = µ{1} = p et P(X = 0) = µ{0} = 1 − p.

On dit que X est de loi de Bernoulli de paramètre p.
On peut penser à X comme le résultat d’un tirage à pile ou face, avec une
pièce qui tombe sur pile avec probabilité p, et sur face avec probabilité
1 − p. (Lorsque p = 1/2, on retrouve l’exemple précédent.)
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Introduction aux probabilités

Indépendance

E est un ensemble fini, et

µ(B) =

#B

#E 2 pour tout B ⊂ E 2
= {(x1, x2) ; x1, x2 ∈ E}.

Si (X1,X2) est une variable aléatoire de loi µ, alors pour tous B1,B2 ⊂ E ,
on a

P(X1 ∈ B1 ; X2 ∈ B2) = P((X1,X2) ∈ B1 ×B2)

= µ(B1 ×B2)

=

#B1 ⋅#B2

#E 2 = P(X1 ∈ B1) ⋅ P(X2 ∈ B2).

On dit que les variables aléatoires X1 et X2 sont indépendantes.
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Introduction aux probabilités

Suites de variables aléatoires indépendantes

Pour n’importe quelle fonction µ ∶ B ⊂ E ↦ µ(B) ∈ [0,1] qui vérifie :

• µ(∅) = 0 et µ(E) = 1,

• Si B1,B2 ⊂ E sont disjoints, alors

µ(B1 ⊔B2) = µ(B1) + µ(B2),

on peut construire une suite (X1,X2, . . .) de variables aléatoires
indépendantes de loi µ, i.e, telles que P(Xn ∈ B) = µ(B) pour tout B ⊂ E .
On a alors, pour tous B1, . . . ,Bn ⊂ E ,

P(X1 ∈ B1 ; . . . ; Xn ∈ Bn) = P(X1 ∈ B1) ⋅ . . . ⋅ P(Xn ∈ Bn)

= µ(B1) ⋅ . . . ⋅ µ(Bn).
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Introduction aux probabilités

Exemple

E = {0,1}, et

µ(∅) = 0, µ{1} = p, µ{0} = 1 − p, et µ{0,1} = 1,

où p ∈ [0,1] est un paramètre.

Si (X1,X2, . . .) est une suite de variables aléatoires indépendantes de loi µ,
i.e, de loi de Bernoulli de paramètre p, alors on peut penser à (X1,X2, . . .)

comme le résultat d’une infinité de tirages à pile ou face, avec une pièce
qui tombe sur pile avec probabilité p, et sur face avec probabilité 1 − p.
On a, par exemple :

P(X1 = 1 ; . . . ; Xn = 1) = P(X1 = 1) ⋅ . . . ⋅ P(Xn = 1)

= p ⋅ . . . ⋅ p = pn.
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Introduction aux probabilités

Des questions ?
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Percolation par arêtes dans Zd

1 Percolation par arêtes dans Zd

2 Percolation de premier passage

3 Géométrie aléatoire avec des processus de Poisson de routes
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Percolation par arêtes dans Zd

Le modèle

On se place sur le réseau hypercubique Zd , où d ∈ N∗.

0 1
(0, 0) (1, 0)

(0, 1)

Z Z2
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Percolation par arêtes dans Zd

Le modèle

Pour chaque arête e de Zd , on garde e avec probabilité p, et on l’enlève
avec probabilité 1 − p, où p ∈ [0,1] est un paramètre du modèle, et ce
indépendamment des autres arêtes.

0 1
(0, 0) (1, 0)

(0, 1)
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Percolation par arêtes dans Zd

Le modèle

Formellement, on se donne une famille (Xe , e arête de Zd
) de variables

aléatoires indépendantes à valeurs dans {0,1}, de loi donnée par

Pp(Xe = 1) = p et Pp(Xe = 0) = 1 − p.

Pour chaque arête e de Zd , on garde e si Xe = 1, et on l’enlève si Xe = 0.

Modèle introduit par Broadbent et Hammersley en 1957.
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Percolation par arêtes dans Zd

La question

Intuitivement, plus p est grand, plus la composante connexe de l’origine a
de chances d’être grande.

(0, 0) (1, 0)

(0, 1)

(0, 0) (1, 0)

(0, 1)

p = 1/2 p = 2/3
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Percolation par arêtes dans Zd

Le modèle

Questions(s) : en fonction du paramètre p, existe-t-il une composante
connexe infinie ?

Quelle est la probabilité

θ(p) = Pp(0↔∞)

que la composante connexe de l’origine soit infinie ?

Proposition

Pour tout p ∈ [0,1], on a

Pp (il existe une composante connexe infinie) ∈ {0,1}.

De plus,

Pp (il existe une composante connexe infinie) = 1⇐⇒ θ(p) > 0.
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Percolation par arêtes dans Zd

Paramètre critique et transition de phase

La fonction θ ∶ p ∈ [0,1] ↦ Pp(0↔∞) est croissante, et on a

θ(0) = 0 et θ(1) = 1.

On a donc le diagramme suivant :

0 pc 1

θ(p) = 0 θ(p) > 0

où
pc = inf{p ∈ [0,1] ∶ θ(p) > 0}.

est le paramètre critique. On dit que le modèle présente une transition de
phase lorsque pc ∈ ]0,1[.
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Percolation par arêtes dans Zd

Le cas d = 1

Proposition

Lorsque d = 1, on a pc = 1. On a donc, pour tout p ∈ [0,1[,

Pp(il existe une composante connexe infinie) = 0.

Idée.
Soit p ∈ [0,1[. Montrons que θ(p) = 0. On a

θ(p) = Pp(0↔∞)

≤ Pp(0↔ n) + Pp(0↔ −n)

= 2 ⋅ Pp(0↔ n),

et ce quel que soit n ∈ N.
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Percolation par arêtes dans Zd

Le cas d = 1

0 n

X0,1 = 1 Xn−1,n = 1

Pp(0↔ n) = P(X0,1 = 1 ; . . . ; Xn−1,n = 1)

= P(X0,1 = 1) ⋅ . . . ⋅ P(Xn−1,n = 1)

= p ⋅ . . . ⋅ p

= pn Ð→
n→∞

0.

On a donc θ(p) = 0.
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Percolation par arêtes dans Zd

Simulations en dimension d = 2

p = 0.49 p = 0.5 p = 0.51
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Percolation par arêtes dans Zd

Le résultat

Théorème
Lorsque d ≥ 2, on a pc ∈ ]0,1[. On a donc :

• pour tout p ∈ [0,pc[,

Pp(il existe une composante connexe infinie) = 0,

• pour tout p ∈ ]pc ,1],

Pp(il existe une composante connexe infinie) = 1.

On peut même montrer que pour tout p ∈ [0,1], on a

Pp(il existe au moins deux composantes connexes infinies) = 0.

G. Blanc (LMO, Univ. Paris-Saclay) Percolation et géométrie aléatoire π day 22 / 38



Percolation par arêtes dans Zd

La grosse question

Théorème
Lorsque d = 2, on a pc = 1/2, et θ(1/2) = 0.

p

θ(p) = Pp(0 ↔ ∞)

0 1

1

pc

Lorsque d ≥ 3, on ne sait pas calculer pc . On conjecture que θ(pc) = 0,
mais on ne sait pas le démontrer pour d = 3.
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Percolation de premier passage

1 Percolation par arêtes dans Zd

2 Percolation de premier passage

3 Géométrie aléatoire avec des processus de Poisson de routes
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Percolation de premier passage

Le modèle

À chaque arête e de Zd , on attribue un temps de passage aléatoire
Te ∈ [0,∞], et ce indépendamment des autres arêtes.

0 1

0.19 0.26 0.21 0.31 0.43
(0, 0) (1, 0)

0.19 0.78 0.89 0.64 0.00

0.12 0.46 0.28 0.17 0.25

0.75 0.15 0.88 0.97 0.67

0.53 0.78 0.62 0.10 0.97

0.52

0.07

0.64 0.88 0.70 0.47 0.44

0.50 0.09 0.67 0.28 0.66 0.62

0.92 0.94 0.78 0.65 0.33
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Percolation de premier passage

Le modèle

À chaque chemin γ = (e1, . . . , en), on attribue le temps de trajet

T (γ) = Te1 + . . . +Ten .

0 1
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0.07
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Percolation de premier passage

Le modèle

Pour tous x , y ∈ Zd , on pose

T (x , y) = inf
γ chemin de x à y

T (γ).

Intuitivement, c’est le temps de trajet optimal de x à y .
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Percolation de premier passage

Le modèle

Modèle introduit par Hammersley et Welsh en 1965.

Question(s) : à quoi ressemble

{x ∈ Zd
∶ T (0, x) ≤ t}

pour t grand ? Comment se comporte T (0,ne1) pour n grand, où
e1 = (1,0, . . . ,0) ?
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Percolation de premier passage

Simulation en dimension d = 2
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Percolation de premier passage

Le cas d = 1

Proposition
Lorsque d = 1, on a

P(

T (0,n)
n

Ð→
n→∞

E[Te]) = 1,

où E[Te] est l’espérance de la variable aléatoire Te .
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Percolation de premier passage

Le cas d = 1

Idée.

0 n

T0,1 Tn−1,n

On a
T (0,n)

n
=

T0,1 + . . . +Tn−1,n

n
,

où les variables aléatoires T0,1, . . . ,Tn−1,n sont indépendantes et de même
loi que Te . Le résultat découle de la loi des grands nombres.
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Percolation de premier passage

Le résultat

Théorème
Lorsque d ≥ 2, il existe une constante γ ∈ [0,E[Te]] telle que

P(

T (0,ne1)
n

Ð→
n→∞

γ) = 1.

Idée.
Le résultat découle de la propriété de sous-additivité suivante : pour tous
m,n ∈ N, on a

T (0, (m + n)e1) ≤ T (0,me1) +T (me1, (m + n)e1).
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Percolation de premier passage

Sous-additivité

0 me1 (m + n)e1

γ1 γ2

Pour tous chemins γ1 de 0 à me1 et γ2 de me1 à (m + n)e1, on a

T (0, (m + n)e1) ≤ T (γ1) +T (γ2).

On en déduit que

T (0, (m + n)e1) ≤ T (0,me1) +T (me1, (m + n)e1).
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Géométrie aléatoire avec des processus de Poisson de routes

1 Percolation par arêtes dans Zd

2 Percolation de premier passage

3 Géométrie aléatoire avec des processus de Poisson de routes
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Géométrie aléatoire avec des processus de Poisson de routes

Processus de Poisson de droites
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Géométrie aléatoire avec des processus de Poisson de routes

Processus de Poisson de routes

Une route est un couple (`, v), où ` ⊂ Rd est une droite (affine), et v ∈ R∗
+

est la limitation de vitesse sur `.
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Géométrie aléatoire avec des processus de Poisson de routes

Le modèle

On se donne un processus de Poisson de routes dans Rd .

On roule sur le réseau de routes aléatoire engendré par le processus, en
respectant les limitations de vitesse : à chaque chemin γ, on associe son
temps de trajet T (γ).

Pour tous x , y ∈ Rd , on note

T (x , y) = inf
γ chemin de x à y

T (γ).

Intuitivement, c’est le temps de trajet optimal de x à y .

Modèle introduit par Aldous en 2012.
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Géométrie aléatoire avec des processus de Poisson de routes

Simulations en dimension d = 2

Merci de votre attention !
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Géométrie aléatoire avec des processus de Poisson de routes

Simulations en dimension d = 2

Merci de votre attention !
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Overview

1 Phénomènes perceptuels
Les lois de la Gestalt

2 Le cortex cérébral et les vois visuelle primaires
Cortex visuel primaire

3 Modèles neurogéométriques de la perception visuelle des contours
Le modèle Citti-Sarti
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Images et perception

Une image est composée d’un ensemble de points et constitue une donnée non structurée.

Comment percevons-nous les objets et les figures?

M. Virginia Bolelli Mathématiques dans la perception visuelle des contours March 14th, 2024 2 / 20



Images et perception

Une image est composée d’un ensemble de points et constitue une donnée non structurée.

Comment percevons-nous les objets et les figures?

Quelques remarques:

La perception est une tâche globale :
l’ensemble est différent de la somme
des parties individuelles.
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Images et perception

Une image est composée d’un ensemble de points et constitue une donnée non structurée.

Comment percevons-nous les objets et les figures?

Quelques remarques :

La perception est une tâche globale :
l’ensemble est différent de la somme
des parties individuelles.

L’image perçue n’est pas la vraie.

L’image perçue n’est pas unique.
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Les lois de la Gestalt sur l’organisation de la perception

Théorie de la Gestalt (”forme” en allemand): le stimulus perçu est quelque chose de plus
que la simple somme de toutes ses parties [Kof35, Koh29, Wer23].

Quelques lois qui guident notre perception visuelle:

Proximité Similarité
Bonne
continuation

Clôture Symétrie

M. Virginia Bolelli Mathématiques dans la perception visuelle des contours March 14th, 2024 3 / 20



Système visuel

Le système visuel est à la base de la perception et implique plusieurs organes dans le
traitement du signal visuel.

La voie visuelle décrit les aires corticales impliquées, qui comprennent un vaste réseau de
neurones interconnectés, travaillant ensemble pour traiter l’information reçue.
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De la rétine au V1

Les mécanismes neuronaux impliqués dans le système visuel prennent naissance dans la
rétine et se propagent. Nous nous concentrons sur le cortex visuelle primaire.

Rétine

Transduction: l’image se
transforme en signal électrique.

Transmission du signal.

LGN
(Lateral Geniculate Nucleus)

V1
(Cortex visuel primaire)

Chargé de traiter les informations
visuelles.
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Cellules simples de V1

L’un des principaux types de neurones dans V1

Sensible à l’orientation : forte réponse aux lignes et aux bords avec des orientations
spécifiques dans le champ visuel.
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Profil réceptif des cellules simples de V1

Il représente la réponse d’une cellule en fonction de la présence d’un stimulus sur la rétine.
Images from [DAOF95, Wan95].

Cette réponse est formalisée mathématiquement en termes de filtres de Gabor:

J ⊂ Retina

φ : J −→ R

(x, y) 7−→ e
−∥(x,y)∥2

σ · sin(2πfx + ϕ)

Gabor patch

Les lignes de niveau de φ (patch de Gabor) indiquent la direction préférentielle et sont
conformes à la mesure des profils.
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Organisation en colonnes des cellules simples de V1

Hubel-Wiesel [HW62]: les cellules simples sélectives de l’orientation sont disposées en
colonnes dans le cortex visuel primaire. Précisément:

- orientation préférentielle constante perpendiculairement à la surface corticale

- orientation préférentielle varie progressivement dans les directions parallèles à la
surface, de telle sorte que différentes colonnes sont sensibles à différentes orientations

La structure anatomique reflète les propriétés fonctionnelles des cellules simples :

Chaque point de la rétine est lié à une structure colonnaire dans V1.

Cela favorise le traitement des informations liées à l’orientation.
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Connectivité corticale en V1

Cartes d’orientation [MAHG93, BZSF97] : représentent la disposition spatiale des
neurones dans V1 en fonction de leurs préférences d’orientation. La préférence
d’orientation d’un point à l’autre varie progressivement.

Orientation maps Long-range connectivity

Les connexions sont mesurées à l’aide d’un traceur. Elles sont:

isotropes dans le voisinage du point d’injection.

anisotropes (fortement directionnelles) entre des neurones distants.
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Modèles mathématiques pour la vision

OBJECTIF : comprendre comment on intègre les informations perceptuelles et
neuronales pour identifier les contours.

Seconde moitié de 1900 :

Koenderink-van Doorn [KvD76, KvD87]

Mumford [Mum94]

Hoffmann [Hof89]

Petitot-Tondut [PT99]: neurogéométrie de la vision.
Utiliser les instruments de la géométrie différentielle et de la théorie des groupes pour expliquer le

comportement du cortex visuel à partir de son architecture fonctionnelle.

Développement après 2000 :

Zucker [BSZ04]

Citti-Sarti [CS06], Sarti-Citti-Petitot [SCP07]

Duits van Almsick Franchen, ter Haar Roomeny

...et bien d’autres !
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Le modèle Citti-Sarti dans R2 × S1

Definition

L’espace perceptif, c’est-à-dire la représentation mentale de l’information sensorielle, est
défini dans R2 × S1.

Columnar organization of V1

⇒ Étant donné un point p = (x, θ) ∈ R2 × S1, celui-ci est identifié à une cellule simple
de V1 sélective de l’orientation θ.
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Courbes de connectivité en R2 × S1

Definition

Soit γ : R −→ R2 × S1 une courbe paramétrique. Le
vecteur tangent est donné par γ′(t) s’il existe et si
γ′(t) ̸= 0.

Il représente la direction locale de la courbe.

Famille de courbes admissibles dans R2 × S1:

On considère γ : R → R2 × S1 t.q.

γ′(t) = X1 + kX2.

Privileged direction in V1

On peut relier toutes les paires de points en utilisant ces deux directions !
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La loi Gestalt de la bonne continuation

”Les éléments alignés (ou ayant un alignement comparable) tendent à former une courbe
continue. Les gens ont tendance à percevoir les objets alignés comme formant des
contours lisses et ininterrompus”.

Comment le système visuel encode la bonne continuation du contour?
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Expérience psychophysique proposée par Field, Hayes et Hess

L’expérience proposée dans [FHH93] implique la présentation d’une image contenant des
patchs de Gabor alignés, disposés en forme de chemin, superposée à un grand nombre de
patchs de Gabor distribués aléatoirement.

Le but de l’expérience était de tester la capacité du sujet à détecter les unités perceptives
présentes dans le stimulus visuel:

le changement de l’orientation des patchs de Gabor formant le chemin détruit la
perception.
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présentes dans le stimulus visuel:

changement de l’orientation des patchs de Gabor formant le chemin détruit la
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Expérience psychophysique proposée par Field, Hayes et Hess

Champs d’associations: description du schéma permettant de déterminer quels éléments
(patchs de Gabor) peuvent être associés à la même unité perceptive en termes
d’orientation et de position. Il y a une forte corrélation entre:

éléments alignés ;

éléments co-circulaires.

⇒ L’ensemble des courbes proposées pour décrire
les champs d’associations est bien formalisé par
la famille des courbes admissibles dans R2 × S1.
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Distance induite par les courbes

Definition

Une distance d sur un ensemble X est une fonction d : X ×X → R qui satisfait les
propriétés suivantes, pour tout x, y, z dans X :

1 d(x, y) ≥ 0 et d(x, y) = 0 ⇐⇒ x = y

2 d(x, y) = d(y, x) (symétrie)

3 d(x, y) ≤ d(x, z) + d(z, y) (inégalité triangulaire)

On considère, pour p, q ∈ R2 × S1:

d(p, q) := inf
γ

{ℓ(γ) | γ est une courbe reliant p et q}

Cette distance dépend de :

Les courbes reliant les points p et q.

La notion de longueur ℓ

M. Virginia Bolelli Mathématiques dans la perception visuelle des contours March 14th, 2024 15 / 20



Sphères induites par la distance

On considère la sphère de rayon r centrée en x :

Sd(x, r) := {y ∈ X | d(x, y) = r} .

(l’ensemble des points qui sont à distance r de x.)

Les courbes qui définissent la distance affectent la forme des sphères :

R2

Sphère euclidienne

R2 × S1 R2-projection

Champ d’association sphère

La distance mesure la corrélation entre les points, qui peuvent être regroupés en unités
perceptives.
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L’individualisation des contours perceptifs

Algorithme proposé par [SC15] :

#{ensemble de points de l’image} = 120.

Pour chaque couple (i, j) de points d’image
avec i, j = 1 . . . 120, on définit:

A(i, j) := e−d(i,j)2 .

Image in R2 × S1

A est une mesure de l’affinité entre les
points.

Les points les plus affiné sont indiqués en
rouge. Ils détectent le contour
bidimensionnel perçu.

Affinity Matrix A
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L’individualisation des contours perceptifs

Stimulus avec 2 unités perceptives.

Image in R2 × S1 1st percept 2nd percept

Individualisation des 2 contours de l’image.

La corrélation la plus forte découle de l’unité perceptive courbe.

Les éléments disposés en lignes droites sont également corrélés : ils forment la
deuxième unité perceptive.
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L’individualisation des contours perceptifs

Triangle de Kanisza (August Kanisza 1858).

Image in R2 × S1 1st percept

Les éléments les plus fortement corrélés sont représentés en rouge. Ils correspondent
au triangle de l’image Kanisza.

Il existe une deuxième corrélation, plus faible (non illustrée), qui permet de récupérer
les cercles.

Cela montre que le triangle est plus saillant que les cercles, ce qui confirme qu’il
s’agit d’un bon modèle pour les mécanismes de perception visuelle.
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Conclusions

✺ Phénomènes perceptuels
- Les loi de la Gestalt sur l’organisation de la perception

✺ Système visuel
- Architecture fonctionnelle du cortex visuel primaire pour les cellules simples selective
de l’orientation.

✺ Modèle neurogéométrique proposé par Citti-Sarti in R2 × S1.
- La perception des stimuli visuels dérive d’une notion de distance basée sur des courbes
spécifiques. Ces courbes sont dirigées par les cellules simples de V1, et les informations
qu’elles véhiculent sont liées à la loi de bonne continuation de Gestalt.
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MERCI POUR VOTRE ATTENTION!!
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M. Virginia Bolelli Mathématiques dans la perception visuelle des contours March 14th, 2024 20 / 20

https://doi.org/10.1007/s10851-005-3630-2
https://doi.org/10.1016/0166-2236(95)94496-r
https://doi.org/10.1016/0042-6989(93)90156-Q
https://doi.org/10.1016/0096-3003(89)90091-X
https://doi.org/10.1113/jphysiol.1962.sp006837


References II

K. Koffka.

Principles of gestalt psychology (nueva york, harcourt, brace &co).
., 1935.

W. Kohler.

Gestalt psychology. new york: H. liveright, 1929.

J. J. Koenderink and A. J. van Doorn.

The singularities of the visual mapping.
Biological Cybernetics, 24(1):51–59, 1976.
doi:10.1007/BF00365595.

J. J. Koenderink and A. J. van Doorn.

Representation of local geometry in the visual system.
Biological Cybernetics, 55(6):367–375, Mar 1987.
doi:10.1007/bf00318371.

R. Malach, Y. Amir, M. Harel, and A. Grinvald.

Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in
primate striate cortex.
Proceedings of the National Academy of Sciences, 90(22):10469–10473, 1993.
doi:10.1073/pnas.90.22.10469.

D. Mumford.

Elastica and computer vision.
In Algebraic geometry and its applications, pages 491–506. Springer, 1994.
doi:10.1007/978-1-4612-2628-4_31.

J. Petitot and Y. Tondut.
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