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1 Exposés

1.1 Sofia Tarricone
Titre : Le diamant Aztéque et son cercle arctique.

Résumé : Dans cet exposé nous allons se pencher sur la question suivante : pour tout entier naturel
n, combien le diamant Azteque de dimension n admet-il de pavages par des tuiles rectangulaires
de taille 2 x 1 ou 1 x 27 La réponse fut donnée par Elkies, Kuperberg, Larsen et Propp en 1992,
via différentes méthodes. Nous nous intéresserons en particulier a la preuve basée sur un algorithme
qui permet de construire des pavages de fagon récursive. Cet algorithme est fondamental puisqu’il
permet de représenter des pavages aléatoires (uniformes) d’un diamant Aztéque de tailles assez
grandes et de visualiser le phénomene dit du < cercle arctique >.

1.2 Tommaso Rossi
Titre : La géométrie sous-riemannienne du probleme de Didon.

Résumé : Le probleme de Didon est une version du probleme isopérimétrique en R%. On va voir que,
en ajoutant une variable, on peut reformuler ce probléeme comme celui de trouver les géodésiques
(c’est-a-dire les courbes les plus courtes) d’une variété sous-riemannienne, appelée le groupe de
Heisenberg.

1.3 Virginia Bolelli

Titre : Mathématiques dans la perception visuelle des contours.

Résumé : Dans cet exposé, nous présenterons une approche disciplinaire visant a examiner I'im-
portance des Mathématiques dans la compréhension des mécanismes de la perception visuelle des
contours. En nous appuyant sur les fondements de la théorie psychologique de la Gestalt, nous
étudierons comment les modeles mathématiques contribuent & décrire et interpréter les processus
neuronaux impliqués dans le traitement des informations visuelles relatives aux contours.

1.4 Guillaume Blanc
Titre : Voyage en probabilités : percolation et géométrie aléatoire.

Résumé : On voyagera autour de quelques jolis modeles de deux thémes centraux en probabilités,
qui sont la percolation et la géométrie aléatoire. Dans son plus simple appareil, la percolation a été
introduite dans la littérature mathématique par Broadbent et Hammersley en 1957, et fait toujours
l'objet de recherches intensives actuellement. Pas si loin de la percolation, la géométrie aléatoire
consiste en ’étude d’espaces métriques aléatoires : des espaces dans lesquels on précise comment
mesurer la distance entre les points, et dont on peut construire naturellement plein d’exemples
probabilistes avec des propriétés riches. Pour les personnes que les mots clés font réver, on parlera
de percolation par arétes sur le réseau euclidien, de percolation de premier passage, de processus
de droites dans l’espace euclidien, et de géométrie aléatoire avec des processus de routes. Pour les
personnes que les mots clés effraient, pas de panique;-)



2 Ateliers

2.1 Un ascenseur pas pratique — Théo Jamin

Vous venez de monter dans un ascenseur possédant seulement 4 boutons :
— un bouton permet de monter de 5 étages,
— un autre permet de descendre de 5 étages,
— un troisieme propose de monter de 7 étages,
— et le dernier, de descendre de 7 étages.
On supposera qu’il n’y a pas de limite d’étages en descendant ni en montant.
Est-il possible d’aller au 243°™¢ étage avec cet ascenseur ?
De maniere plus générale, a quel étage peut-on se rendre ?
Que se passe-t-il si je change 5 par 11 et 7 par 177 Ou encore par n et m?

Pouvez-vous trouver un algorithme pour se rendre (si cela est possible) a 1’étage £7?

ok N e

Si 'on impose que I'ascenseur ne peut plus descendre en dessous du rez-de-chaussée 7

2.2 Une lettre d’Euler — Théo Jamin

Vous avez regu une lettre d’EULER. Malheureusement, vous venez de faire tomber votre café dessus... Vous 'ouvrez et
découvrez qu’'une partie est illisible. Vous lisez

J’ai trouwvé une élégante formule qui relie le nombre de sommets s, de faces f et d’arétes a de n’importe quel polyédre
convexe de l’espace :

s—a+ f=2.

En voici une élégante démonstration :
*** Tache de café ***

Pourriez-vous imaginer une preuve que vous pourriez transmettre a la communauté mathématique ?

2.3 Un passager anarchiste — Théo Jamin

Un avion a des places numérotées de 1 a n, avec n un entier naturel. Le jour de ’embarquement, toutes les places ont
été attribuées a un passager et les passagers se présentent dans l'ordre de leurs numéros de siege. Le premier passager, ne
respectant pas les régles, s’assoit au hasard (il est possible qu’il s’assoie & sa place attitrée). Les passagers suivants s’assoient
a leur place attitrée si elle est libre et sinon s’assoient au hasard.

1. Pour n = 2,3 ou 4, déterminer la probabilité que le dernier passager puisse s’asseoir a sa place.

2. Déterminer cette probabilité pour n quelconque.

2.4 Un jeu dangereux — Théo Jamin

Vous participez a un jeu dans lequel, a chaque fois qu'une personne est touchée elle est éliminée. Vous étes disposés en
cercle et on vous attribue un numéro de 1 & n (pour n le nombre de joueurs) dans le sens des aiguilles d’'une montre. Le
premier joueur touche la personne suivante, qui est donc éliminée. Le joueur suivant fait de méme et le jeu continue jusqu’a
ce qu’il n’y ait plus qu’un joueur restant qui est déclaré vainqueur. Trouver un critére pour choisir votre place en fonction
du nombre de joueurs n.

2.5 Le chat et la souris — Théo Jamin

Vous étes dans votre jardin et vous venez de voir une souris tomber dans votre piscine (tout & fait ronde). Votre chat,
comme tous les chats, aime les souris mais a horreur de I’eau. Vous notez que votre chat se déplace quatre fois plus vite
que la souris.
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La question que vous vous poser est donc la suivante : la souris réussira t-elle a sortir de la piscine sans se faire attraper
par le chat?

2.6 Les maisons de Dudeney — Théo Jamin

Trois familles voisines se détestant mutuellement ont besoin d’eau, d’électricité et de gaz et doivent donc accéder quand
elles le veulent aux trois usines. Vous étes le maire de la ville ou habitent ces familles. Elles vous demandent de ’aide
pour l'acces aux usines et expliquent qu’elles souhaitent que vous construisiez les routes d’acces de chacune des maisons a
chacune des usines, cependant, elles ne doivent pas se croiser pour éviter tout probléme. Avez-vous une solution ? Que se
passe t-il si les familles habitent sur une autre planete possédant une géométrie différente de celle de la terre ?

Peut-étre que le groupe ayant recgu la lettre d’EULER pourra vous aider...

2.7 Parcours eulériens de graphes — Pablo Jiménez

On cherche a dessiner une une forme comme celle-ci sans lever le crayon du papier, et sans passer deux fois par la méme
aréte. Arrivez-vous a le faire sur le dessin de gauche 7 Et celui de droite ? On appelle un tel chemin un parcours eulérien du
graphe G en question. En étudiant le nombre d’arétes qui sortent de chaque sommet, ce qu’on appelle le degré du sommet,
trouvez une fagon de différencier les graphes qui admettent un parcours eulérien de ceux qui n’en ont pas.

2.8 Le jeu de Marienbad — Pablo Jiménez

Le jeu de Marienbad se joue a deux : des allumettes sont disposées en quatre rangs de 1, 3, 5 et 7. Chaque joueur prend
alors a son tour le nombre d’allumettes qu’il souhaite dans une seule rangée. Le gagnant est celui qui prend la derniere
allumette.

. 0 ’
o o o . o
A A
o o o o o o o o o o T e e Etc...
B
o o o o o o o o o o o o o o ® o o o o o o

L’un des deux joueurs a-t-il une stratégie gagnante ? Et si on modifie les regles?

2.9 Exercice du séminaire sur les pavages de A(n) — Sofia Tarricone
Soit AD(n;x, q) la fonction de comptage des pavages de A(n) raffinés

AD(n;z,q)= Y, [[e"“Dq® (1)

P pav. A(n) dEP



ou

1 si d est verticale, (—=1)9+7 (i 4 n + 1), sid est verticale,
v(d) = {2 (d) =

0, si d est horizontale. 0 si d est horizontale.

En supposant que les fonctions aux niveaux n et n — 1 soient liées par la relation
AD(n;z,q) = (1 + 2q)"AD(n — 1;2¢%, q), (3)
prouver, par récurrence sur n, la formule

n—1

AD(n;z,q) = [ (14 z¢™+")"*, (4)
k=0

2.10 Compter les chemins de Dyck — Sofia Tarricone
Probleme

Un chemin de Dyck de semi-longueur n € N est un chemin dans le réseau N? partant en (0,0) et arrivant en (2n,0) ol
les seuls pas admis sont (1,1) i.e. /et (1,—1) i.e. \,. Des exemples sont donnés en Figure 2.

(0,0) (16,0)

FIGURE 2 — Deux chemins de Dyck de sémi-longeur n = 8.

Prouver que le nombre de chemins de Dyck de sémi-longuer n est donné par le nombre de Catalan

1 2n
by =
ca n—i—l(n) (5)

Curiosité

Les nombres de Catalan comptent beaucoup d’objets combinatoires, pour la liste complete voir ...
Avant de voir la preuve, nous faisons le calculs pour les premiers n, voir Figure 3.

— Pour n =1, il y a un seul chemin de Dyck

{7}

— Pour n = 2, il y a deux chemins de Dyck

{(/‘7/‘7\”\()7(/‘7\”/‘7\)}'
— Pour n =3, il y a cinq chemins de Dyck

{(/‘7/‘7/‘7\(7\“\()7(/‘7/‘7\(7/‘7\“\()7(/‘7/‘7\(7\(7/‘7\()7(/‘7\“/‘7/‘7\(7\()(/"\‘7/"\“/‘7\)}'

0,0) (2,0) (0,0) (4,0) (0,0) (6.0)
FIGURE 3 — Tous les chemins de Dyck pour n = 1,2, 3.
Pour prouver le résultat, il y a 5 étapes principales a suivre, qui peuvent étre considérées comme suggestions.

Etape 1

Voir que le comptage des chemins de Dyck est équivalent au comptage des chemins dans le réseau N? partent en (0, 0)
et arrivant en (n,n) dit up-right et qui reste au-dessus de la diagonale.



Etape 2

Compter toutes les possibles chemins dans le réseau N? partent en (0,0) et arrivant en (n, n) dit up-right (sans contrainte
sur la diagonale) et voir que ils sont
2n
6
() ©)

Pour tout n nous notons u,, le nombre de chemins dans le réseau N2 partent en (0,0) et arrivant en (n,n) dit up-right
et qui reste au-dessus de la diagonale. Parmi ces chemins, nous notons v,, ceux qui ne touchent jamais la diagonale avant
le point (n,n).

Etape 3

i) Prouver que pour tout n > 1, nous avons
Un = Unp—1-

ii) Prouver que les u, satisfont la récurrence suivante (en décomposant les chemins par rapport au dernier point de la
diagonale touché par le chemin avant (n,n) et le point précédent)

Up = UQUp—1 + ULUp—2 + UsUp_3 + -+ + Up_1Ug, avec ug = 1. (7)

Etape 4
Considérer la fonction génératrice des u,, définie comme la série formelle :
u(z) = Z Unx". (8)
n>0
Prouver qu’elle satisfait 1’équation
z(u(x))? —u(z) +1=0. 9)
Etape 5

Prouver que u,, = cat,, : résoudre d’abord ’équation (9) pour u et utiliser ensuite expansion du binéme généralisé dans
I’expression pour u obtenue ainsi.
Pour tout @ € R, k € N on pose

(a) ala—1D(a—2)...(a—k+1)

k k!
et (2h)!
(2k -l = pr (10)
2.11 Flot de champs de vecteurs — Tommaso Rossi

En R”, soient X,Y deux champs des vecteurs lisses. On note par e!X : R” — R” le flot de X, c’est-a-dire que e!X est
tel que, pour chaque ¢ € R™, la fonction R > ¢ — !X (q) satisfait le probleéme suivant :

Montrer que, lorsque t — 0,
X oeY oe™ 0™ (q) = ¢+ 12[X, Y](q) + o(t?). (12)

Indication : montrer que la suivante expansion asymptotique est valide lorsque ¢ — 0
tX o 2
e () = g +tX(q) + 5 X7(g) + o). (13)

2.12 Quel est le nombre de facteurs premiers d’un grand entier aléatoire uniforme? —
Guillaume Blanc

Pour tout n € N*, on note w(n) le nombre de facteurs premiers de l'entier n, comptés sans multiplicité. Par exemple,
on aw(2) =1etw(d) =1 (on convient que w(l) = 0). A défaut d’avoir une formule explicite pour w(n), on cherche a
comprendre le comportement de la fonction w. Pour cela, voici des pistes que vous pouvez explorer.

— Calculer les premieres valeurs de w(n).



— Quelles valeurs peut prendre w(n)?

— Quel est le nombre moyen de facteurs premiers d’un grand entier aléatoire uniforme ?

— Quel est le nombre “typique” de facteurs premiers d’un grand entier aléatoire uniforme ?
Pour vous aider, vous pouvez considérer les affirmations suivantes.

e Si X, est une variable aléatoire de loi uniforme sur [1,n], alors pour tout k € [1,n], on a

1
P(X,=k)=—.
(Xn=k)=
Plus généralement, quelle que soit A C [1,n], on a
#A

e Pour toute fonction f : [1,n] — R, on définit 'espérance de f(X,,) par

> (k).

1

S|

E[f(Xn)] =Y f(k) - P(Xn = k) =
k=1

n

Intuitivement, c’est la valeur moyenne de f(k) pour un entier k tiré uniformément au hasard entre 1 et n. Si f et g
sont des fonctions de [1,n] dans R, et si A et u sont des réels, alors

EA - f(Xn) + 1 g(Xn)] = A-E[f (Xn)] + - E[g(Xn)].

e On peut écrire
w(Xy) =By +...+ By,
ou p1 < ... < pg sont les nombres premiers p < n, et B} est la variable aléatoire qui vaut 1 si p divise X,,, et 0 sinon.

e Pour toute fonction f : [1,n] — R, on définit la variance de f(X,,) par

V(f(Xn)) = E [(f(Xa) - Ef(Xa)])?] .

Intuitivement, la variance mesure I’écart a la moyenne. En développant le carré, on peut aussi écrire
V(f(Xn)) = E [f(X0)?] - E[f(Xn)]*.

e Pour tout a > 0, on a
V(£(X0)

P(f(Xn) — ELf (X)) 2 ) < =25

Pour faire sens du membre de gauche, remarquez qu’on peut lécrire P(X,, € A), avec
A={ke[Ln]:|f(k)—E[f(Xn)]] = a}.

e Ona 1
Z —=lInlnn+ O(1) lorsque n — oo,
p<n

ou la somme porte sur les nombres premiers p < n.

2.13 Quelle est la probabilité que deux grands entiers aléatoires uniformes indépendants
soient premiers entre eux 7 — Guillaume Blanc
Pour tous m,n € N*, on dit que m et n sont premiers entre eux si leur seul diviseur commun est 1, ou de maniere

équivalente, s’il n’existe pas de nombre premier p qui divise m et n. Quelle est la probabilité que deux grands entiers
aléatoires uniformes indépendants soient premiers entre eux ?

Pour vous aider, vous pouvez considérer les affirmations suivantes.

e Si X, et Y, sont deux variables aléatoires indépendantes de loi uniforme sur [1,n], alors pour tous i, j € [1,n], on a

. . 1
P(Xn:Z;Xn:]):ﬁ'

Plus généralement, quelle que soit A C [1,n]?, on a

A
P((X, V) € A) = T2



e Pour toute fonction f : [[l,n]]2 — R, on définit espérance de f(X,,Y,) par
. . . 1 .
Ef(Xn, V)= > f6.5) P(Xp=i:Ya=5)=—5- . [f(i.j).
1<i,5<n i <i<n

Intuitivement, c’est la valeur moyenne de f(i,j) pour deux entiers i et j tirés indépendemment et uniformément au
hasard entre 1 et n. Si f et g sont des fonctions de [1,n]? dans R, et si A et u sont des réels, alors

EP‘ : f(Xna Yn) +p- g(XmYn)] =X E[f(Xna Yn)] +p- E[Q(Xm Yn)]

Si f et g sont des fonctions de [1,n] dans R, alors

e On peut écrire
P(X, et Y, sont premiers entre eux) = E [(1 — By)-...-(1- ng)] ,

ou p; < ... < pg sont les nombres premiers p < n, et B} est la variable aléatoire qui vaut 1 si p divise X, et Y, et 0
sinon. Pour faire sens du membre de gauche, remarquez qu’on peut Uécrire P((X,,,Y,) € A), avec

A={(i,j) € [1,n]? : i et j sont premiers entre eux} .

Pour faire sens du membre de droite, remarquez qu’on peut 1'écrire E[f(X,,Y,)] pour une certaine fonction f :
[1,n]?> — R. En développant le produit, on obtient I’expression

k
P(X,, et Y, sont premiers entre eux) = » (—1)7 - Z E {B;}il e Bgik
=0

j 1<ir<...<i;<k

e Sip et ¢ sont des nombres premiers distincts, alors p divise n et ¢ divise n si et seulement si pg divise n.

1 6
H <1— 2) — — lorsque n — oo,
s

p<n p

e On a

ou le produit porte sur les nombres premiers p < n.

2.14 Résolution de I’Equation Logistique avec la Méthode d’Euler — Virginia Bolelli

Considérez ’équation différentielle logistique, un type d’équation qui décrit la croissance d’une population limitée par
les ressources disponibles. Sa forme générale est :

L —pr.P-(1-L) pourt€ [ty tp]
P(ty) =Py
Ou :
— P est la population en fonction du temps ¢.

— 1 est le taux de croissance de la population : une mesure indiquant a quelle vitesse une population augmente dans le
temps.

— K est la capacité de charge de 'environnement : elle représente le nombre maximal d’individus d’une population
qui peuvent étre soutenus sans causer de dommages a I’écosysteme ou sans dépasser la capacité de régénération des
ressources naturelles.

Exercices proposés :
— Implémentez un algorithme pour la résoudre numériquement.
— Analyse des parametres :

— Comment la capacité de charge K affecte-t-elle la croissance de la population ?
— Quelles sont les implications d’avoir un taux de croissance r négatif ?
— Comment le comportement de la population varie-t-il en fonction de K et r7?



Stepl : Méthode d’Euler Explicite pour les EDOs

- Dérivée comme limite du rapport d’incrément :

dP
E - h—0
(Ou Taylor ?)
- Si h est suffisamment pétit :

- Introduction a ’algorithme : on commence avec tg et t; =tg+ h :

P(t1) = P(to) + h - P'(to).

On généralise :

P(tj41) = P(t;) + h- P'(t;)
P(ty) =Py

Step 2 : Implémentation du Code (en Python ?)

Comment implémenter le code 7

— Choix de h :
trp —to

N b
ou N est le nombre de pas que je veux faire pour passer du point initial au point final.

h:

— Pseudocode :

# Définition de 1’é&quation logistique
def logistic_eq(P, r, K)
return r * P x (1 - (P / K))

#Méthode d’Eulero pour résoudre 1’équation différentielle :
def euler_method(func, PO, r, K, h, n):
P_values = [PO]
for i in range(n):
P_new = P_values[-1] + h * func(P_values[-1], r, K)
P_values.append (P_new)
return P_values

#Appel de 1’algorithme :

K=1;

r = 0.5;

t0 = 0;

tf = 100;

PO = 0;

N = 50;

h = (tf-t0)/N;

P = euler_method(logistic_eq, PO, r, K, h, n)

Step 3 : Analyse des résultats

Questions a poser :

- Si on augmente le nombre de pas N, alors h devient plus petit. Comment cela affecte-t-il le résultat de la solution ?
Comparer avec la solution exacte, donnée par :

KPye

PO = ki her—1

- Analyse du comportement de I’équation lorsque les parametres K et r changent
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° Les pavages du diamant Azteque

9 Compter les pavages

© A quoi ressemble un pavage aléatoire ?

S. TARRICONE Le diamant Azteque et son cercle arctique
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ﬂ Les pavages du diamant Azteque
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Le diamant Aztéque

y
Soit n € N* fixé.
A1)

A(n), le diamant Aztéque de taille n, est la 5
figure géometrique du plan obtenue en
considérant tout les carrés K .
[a,a+ 1] x [b,b+ 1], a, b € Z contenus - 5 X
dans le diamant N 4

{(x,y) e R tq: x| +y| <n+1}. T

Remarque Le nombre de carrés dans A(n) est donné par

4zn:k:2n(n+1).

k=1

S. TARRICONE Le diamant Azteque et son cercle arctique Paris, 14 Mars 2024 4/17



Le diamant Aztéque

Soit n € N* fixé.

A(n), le diamant Aztéque de taille n, est la P N

figure géometrique du plan obtenue en L’ N
considérant tout les carrés . N

[a,a+ 1] x [b,b+ 1],a, b € Z contenus S X
dans le diamant N | ;3

{(x,y) eR® ta: x|+ |yl <n+1} T

Remarque Le nombre de carrés dans A(n) est donné par

4zn:k:2n(n+1).

k=1

S. TARRICONE Le diamant Azteque et son cercle arctique Paris, 14 Mars 2024 4/17



Les pavages
Nous considérons des dominos rectangulaires de tailles 2 x 1 ou 1 x 2

— L

Un pavage de A(n) est un ensemble de tels dominos tel que :
e A(n) est entiérement recouvert par les dominos;
e les dominos ne se superposent pas.

Exemple Les pavages horizontaux pour n =1 et 2.

Nous définissons a, = #{pavages de A(n)}.

Probléme de combinatoire enumerative
Pour chaque n, combien vaut a, ? J

S. TARRICONE Le diamant Aztéque et son cercle arctique Paris, 14 Mars 2024 5/17



Les premiers calculs

Pour n = 1 nous avons exactement 2 pavages possibles, a; = 2.

_—

flip

S. TARRICONE Le diamant Aztéque et son cercle arctique Paris, 14 Mars 2024 6/17



Les premiers calculs

Pour n = 1 nous avons exactement 2 pavages possibles, a; = 2.

_

flip

Pour n = 2 nous avons exactement 8 pavages possibles, a, = 8 = 2°.

—
1flip

—
2flips

N [
| [
= s H ] =LA

S. TARRICONE Le diamant Azteque et son cercle arctique Paris, 14 Mars 2024 6/17
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Lien avec les modéles de dimers

Les pavages de A(n) sont en bijection avec les couplages parfaits du graphe planaire
associé (par dualité) a A(n).

Lensemble des couplages parfaits d’'un graphe donné est appelé modéle de dimers.
Le modeéle de dimers pour un sous-graphe rectangulaire de Z? est connu depuis les
travaux de Kenyon des années '60.

Remarque Les modeles de dimers sont considérés comme des modéles de physique

statistique, ils modélisent la répartition de molécules di-atomiques a la surface d’un
cristal.
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Bijection avec les chemins de Schroder non-intersectant

En 2004 Eu et Fu ont prouvé que les pavages de A(n) sont en bijection avec
'ensemble des n-uplets (w1, ..., m,) de grand chemins de Schroder tels que
e pour tout i # j, m; et m; ne s’intersectent pas;

e Pouri=1,...,nchaque

mivades (-2i+1,0)a (2i —1,0).

R // . \\
LN I

From A simple proof of the Aztec diamand theorem by Eu et Fu.
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© Compter les pavages
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Le résultat de Elkies, Kuperberg, Larsen et Propp
Pour x, g € R, des parametres, nous avons la fonction qui compte les pavages raffinés

Amxg) = Y [[XOq),

P pav. A(n) deP
ou pour chaque domino d dans un pavage de A(n), nous définissons les fonctions
v(d) = 3, si d est verticale, (d) = (=)™ + n+ 1), si d est verticale,
10, sid esthorizontale. | 0si d est horizontale.

Remarque AD(n;x =1,g=1)=3%p pav. A(n) 1=a,,.
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Le résultat de Elkies, Kuperberg, Larsen et Propp
Pour x, g € R, des parametres, nous avons la fonction qui compte les pavages raffinés

AD(n; x, q) = Z H XV(d)q’(d)»
P pav. A(n) deP

ou pour chaque domino d dans un pavage de A(n), nous définissons les fonctions

1, si d est verticale, (=1)™*7(i + n+ 1), si d est verticale,
vid)=42" " . r(d) = . .
0, si d est horizontale. 0 si d est horizontale.

Remarque AD(m x =1,9=1) =3 p 0 an 1 = an-

Théoreme (Elkies, Kuperberg, Larsen, Propp, 1992)
Pour tout n, la fonction AD(n; x, q) est donnée par

n—1

AD(n; x,q) = [J(1 + xg®+")"*
k=0

Corollaire Pour tout n, le nombre de pavages de A(n) correspond a

n(n+1)
2

an:
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Idée de la preuve

Lemme Les fonctions qui comptent les pavages raffinés de taille n et n — 1 sont liés
par la relation
AD(n; x,q) = (1 + xq)"AD(n — 1; xq?, q).

1

Par induction sur n, en utilisant cette relation, la formule explicite pour AD(n; x, q) est
ensuite prouvée (voir atelier).

Remarque Pour x = g = 1 nous avons que
an = 2”a,,,1 .

Lidée fondamentale derriére cette formule est de pouvoir construire de fagon recursive
des pavages de taille n a partir d’'un pavage de taille n — 1.
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Algorithme de Shuffling
Pour un pavage donné de A(n — 1), nous construisons un pavage de A(n).

e A partir du point au milieu du sommet de A(n — 1), nous marquons tous les points
du réseau a distance paire de celui ci.

e Sur chaque domino, nous posons une fleche, en direction du point marqué du
réseau qui tombe au mileu de son coté de taille 2.

e Nous regardons tout les carrés de taille 2 x 2 dans A(n — 1) : si un est composé
de deux dominos ayant des fleches en direction du meme point nous éliminons les
dominos, ce sont des mauvais paires.

o Nous mouvons simultanéamont en direction de leur fleche tout les autres dominos
de un.

Les dominos sont ainsi placés a l'intérieure de A(n). La place vide laissée est
composée de

2n(n+1)—2n(n—1) =4n
carrés disposés en n carrés de taille 2 x 2.

e Nous rémplissons ces derniers avec n bon paires de dominos, en prénant une
paire verticale ou horizontale avec probabilité 1/2.

https://fedimser.github.io/adt/adt.html
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Outline

9 A quoi ressemble un pavage aléatoire ?
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Génération aléatoire de pavages de grande taille

Remarque Lalgorithme de shuffling permet d’engendrer des pavages aléatoires
uniformes, i.e. tels que pour tout n chaque pavage peut apparaitre avec probabilité

1
2n(n+1)/2 )
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Génération aléatoire de pavages de grande taille

Remarque Lalgorithme de shuffling permet d’engendrer des pavages aléatoires
uniformes, i.e. tels que pour tout n chaque pavage peut apparaitre avec probabilité

1
on(n+1)/2°

Pourtant, les images que nous obtenions n’ont pas vraiment 'air aléatoire...

Images générées par Antoine Doeraene https://sites.uclouvain.be/aztecdiamond/domino-shuffling-implementation.html
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Le théoréme du cercle articque

Le cercle inscrit dans le diamant Azteque divise

e la zone gelée, donnée par les quatres coins du diamant, dans lesquels il y a un
unique type de domino,

e la zone témperée, ou tous les types de dominos apparaissent.
Et ce phénomene arrive avec probabilité qui tend vers 1 lorsque n tend vers linfini.

Théoréme (Jockusch, Propp, Shor, 1995)

Soit e > 0. Pour tout n assez grand, tous sauf une fraction ¢ des pavages de A(n)
aurant une zone témperée dont la frontiére reste uniformement a distance en de
linterieur du cercle inscrit.

S. TARRICONE Le diamant Aztéque et son cercle arctique Paris, 14 Mars 2024 15/17



Merci de votre attention !

Je vous attend a I'atelier...
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La

reine Didon

Au debut de 9éme siecle A.C nait
Didon, princesse de Tyr (actuel
Liban).

~ 820 A.C. : Au mort du roi de Tyr,
son frere Pygmalion assassine son
époux afin de prendre le pouvoir.
Didon, avec une suite nombreuse,
s'enfuit vers I'Afrique du Nord.

814 A.C. : Didon atteint Byrsa
(proche de I'actuel Tunis) et
demande asile aux autochtones. Elle
obtient pacifiquement des terres
pour s'y établir, par un accord avec
le seigneur local. Mais, on ne lui
concede que ce que pourrait couvrir
la peau d'un beeuf.

Tommaso Rossi
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Figure: Didon abandonnée - A. Sacchi
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La construction de Chartage - 814 A.C.

@ Didon découpe la peau en si fines laniéres qu’elle obtient, bout a bout, une corde de
longueur de prés de 4 km. Avec la corde ainsi formée, elle encercle son territoire et
fonde la tres célebre ville de Carthage.

A |y Y

Figure: Carte de la Carthage punique (coloriée en gris)
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Le probleme de Didon

En formant un arc de cercle plutdt qu'un triangle, un rectangle, un carré ou tout autre
forme géométrique sans point double, Didon avait donc admis la solution au probleme

isopérimétrique suivant :

Soit L une ligne donnée. De toutes les courbes, sans points double, dont les points initial
et final sont sur L, et de longueur donnée, trouver celle qui (avec L) entoure |'aire la plus
grande.

AV U W W W
\\\\Me\r IV\Iethe|}rar>ee\ \ \\\ Mer Medlterranee\\

Figure: Les deux courbes ont la méme longueur, mais I'aire entourée par la seconde est plus
grande. Ici, L représente le littoral méditerranéen.
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Plan de I'exposé

© La solution au probleme de Didon
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La formalisation du probleme de Didon

Soit L = {y = 0} I'axe des x et soit £ € (0,+00). Le probléme de Didon est un probleme
de maximisation sous contrainte : trouver une courbe c : [0,1] — R? telle que

c(0),¢(1) € L,
Longeur de ¢ = ¢; (D)

Aire obtenue entre ¢ et L — max

De maniére explicite, soit c(t) = (x(t), y(t)) une paramétrisation de la courbe telle que
(x(0), y(0)) = (0,0). Alors, on a :

y

o {(c) = /0 V() 1 32(5) ds:

~0 o (c) :/dedy: %/Ol(x(s)y(s)—k(s)y(s))ds,

Figure: La région Q a comme

contour c et L.
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La solution du probleme de Didon - |

On utilise des téchniques de calcul des variations pour trouver la solution a (D):

@ On suppose que ¢ est une solution 3 (D) : ¢ : [0,1] — R? est une courbe telle que
c(0) =(0,0), c(1) € Let

o/ (c) = maxo/(&) sous la contrainte £(c) =¥,

@ Alors c est point critique de la fonction lagrangienne de ce probléeme, donnée par

Z(x(s),y(s); x(s), y(s)) := %(X(S)Y(S) = X(s)y(s)) +A V/X2(s) + y2(s),
————

intégrande de £(-)

intégrande de <7 (-)

ol A > 0 est le multiplicateur de Lagrange.

(%)
La fonction f a deux points critiques Xmin €t
Xmax. |ls sont tels que

Xinin

f/(xmin) = f/(xmax) =0.

b
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La solution du probleme de Didon - Il

© Comme c est point critique de ., on a :

VZ(c)=0

~» équations d’Euler-Lagrange.

@ Nous résolvons les équations d’Euler-Lagrange associées a .Z et nous obtenons qu'ils

existent deux constantes Ci, G, € R telles que

L -+ - ] =o.

Donc, on trouve une constante R > 0 telle que

(x(t) = Q> + (v(t) — G)* = R™.

,\(CnCz)

~ Cela signifie que c(t) = (x(t), y(t))

LR parameétre un arc de cercle de centre

(Gi, &) et rayon R.

RNCO)

(0,0)
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Relever le probléme dans R3 - |

But : “relever” le probleme de Didon dans R® et définir la structure géométrique associée
a ce probleme.

Soit ¢ : [0,1] — R? avec composantes c(t) = (x(t), y(t)) et supposons ¢(0) = (0,0),
¢(1) = (x1,y1)- On rappel que

() = 5 [ (G)x() — <)y (s) s

Ensuite, nous pouvons relever le probleme dans R?, en définissant la composante

additionnelle de ¢ comme suit
2() = o (c10a) = 3 [ (o)x(6) = K(9)(s)) as

La courbe v(t) := (x(t), y(t), z(t)) a la propriété que z(t) est I'aire de la région dans R?
délimitée par la projection (x(s), y(s)) et la ligne passant par I'origine et (x(t),y(t)) .

~+ Cette procédure nous permet de définir une géométrie non-euclidienne sur R
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Relever le probléme dans R3 -
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'
'
'

'
2(t)=A(c)00)
h

©,0)
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Relever le probléme dans R3 - Il

(0,0)
AlC|o.)

iz
vitl

z()=A(C|.q)
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Le groupe de Heisenberg - |
Nous définissons une géométrie non-euclidienne sur R*. Considérons la famille de plans
donnée par

Dixy.z) = span {X(x,y,2), Y(x,y,2)},

oll X et Y sont deux vecteurs dans R? définis par

1
X(x,y,z):=| 0 |, Y(x,y,z) =

NIX = O

D est appelée distribution et elle a toujours dimension 2.

Figure: La distribution au points du plan {z = 0}.
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Le groupe de Heisenberg - |l
Nous définissons un produit scalaire (-, -) sur D, en déclarant X et Y orthonormés. Donc,
pour tout v,w € D, ;), On a
V= VlX(X,%Z) + V2Y(X,y,Z), w= WIX(X7yaz) + W2Y(X,_y,Z),
ainsi que

(v,w) = viws + vown

On ne peut calculer le produit scalaire que pour les vecteurs sur D. )

Par exemple, le vecteur (0,0, 1)T n'appartient pas a D et donc on ne peut pas évaluer sa
norme.

Définition. Le groupe de Heisenberg H est R® équipé de la distribution D et du produit
scalaire (-, ) sur D.

~+ Le groupe de Heisenberg est un exemple de géométrie sous-riemannienne.
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Les courbes admissibles en H - |

Définition. Nous disons qu’une courbe v : [0,1] — R® est admissible, si et seulement si
elle est tangente a D, (), c'est-a-dire :

A(t) € Dyeys vte[o,1].

/

Figure: Une courbe admissible est tangente a la distribution

Rappel que le produit scalaire n’est défini que sur la distribution.

On ne peut que évaluer la vitesse des courbes admissibles! )
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Les courbes admissibles en H - Il

Soit maintenant ¢ : [0,1] — R? et soit v : [0,1] — R® son relevement. Alors, y(t) est
admissible. En effet, on a pour tout t € [0,1] :

(0= (X(0.7(0. 3 ((Ox(0) = (r(1) ) = DX () + IO Y (1 (0)

Une courbe est admissible si et seulement si elle est le relevement d'une courbe
c:[0,1] — R? dans R®. J

En rappelant que X, Y sont orthonormés, la vitesse de v(t) = (x(t), y(t), z(t)) est

(1), 3(0)F = V/32(0) + 72(0).

Alors, la longeur d'une courbe admissible v en H est la méme que celle de sa projection ¢

en ]R2, notamment :

() = [ VRO = ()

tea(7) = Jo v/3E(0) + 72(0) + 22(0) dt # Lu(7). J
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La géométrie sous-riemannienne du probleme de Didon

Théoreme

Une courbe admissible v : [0,1] — H, ~(t) = (x(t),y(t),z(t)) est la courbe la plus
courte de v(0) = (0,0,0) a (1) = (x(1),y(1),z(1)) dans H si et seulement si sa
projection c(t) = (x(t),y(t)) est la solution du probleme (dual) de Didon pour les
courbes joignant (0,0) et c(1) = (x(1), y(1)) avec une aire donnée de z(1).

@ Le probléeme dual de Didon : soit L une ligne donnée. De toutes les courbes, sans
points doubles, dont les points initial et final sont sur L, et telle que elle entoure une

aire donnée, trouver la plus courte.

@ Les courbes les plus courtes entre deux points donnés sont appelées géodésiques.
Dans R3, les géodésiques sont des lignes droites. Dans la géométrie non-euclidienne

de H, les géodésiques sont spirales.
Alors, le théoreme dit que :

Géodésiques dans H = Solutions au probleme de Didon J
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Merci pour |'attention !

Figure: La boule unité du groupe de Heisenberg
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Introduction

Au programme

@ Percolation par arétes dans Z¢
© Percolation de premier passage

© Geéomeétrie aléatoire avec des processus de Poisson de routes
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Introduction aux probabilités

Bréve histoire des probabilités

Théorie mathématique née de la modélisation de phénomeénes aléatoires
(e.g, jeux de hasard).

Quelques dates clés :

e Correspondance entre Pascal et Fermat autour des problémes de dés
du chevalier de Méré (1654).

e Théorie de la mesure, intégration de Lebesgue (1901).
e Axiomatique de Kolmogorov (1933).

Une facon de définir la discipline : étude des variables aléatoires.
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Introduction aux probabilités

Variables aléatoires

Soit E un ensemble. Une variable aléatoire a valeurs dans E est une
fonction X d'un ensemble “abstrait” Q vers E.

Plutét que de voir X comme la fonction w € Q — X(w), on voit X comme
un élément “aléatoire” de E, et on considére les probabilités P(X € B),
pour Bc E.

Conformément a l'intuition, ces nombrent vérifient :
e P(X eB)e[0,1] pour tout B c E,
e P(Xew)=0etP(XecE)=1,

e si By, B c E sont disjoints, alors
P(XeBiuBy)=P(XeB)+P(XeBy).

Ils caractérisent la loi de X.
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Introduction aux probabilités

Variables aléatoires

Pour travailler avec une variable aléatoire X, on commence par définir sa
loi en prescrivant les probabilités P(X € B), pour B c E.

Pour n'importe quelle fonction p: B ¢ E — u(B) € [0,1] qui vérifie :
o (@) =0etu(E)=1,

e si By, B> c E sont disjoints, alors

p(Biu By) = u(B1) + pu(Bz2),

on peut construire une variable aléatoire X de loi 1, i.e, telle que
P(X € B) = u(B) pour tout Bc E.
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Introduction aux probabilités

Exemple

E est un ensemble fini, et

B
u(B) = % pour tout B c E.

Si X est une variable aléatoire de loi y, alors
P(X = x) = pfx} = — fout x ¢ £
=x)=pu{x}=—— pourtout x € E.

K 4E p

On dit que X est de loi uniforme sur E.
e Lorsque E ={1,...,6}, on peut penser 3 X comme le résultat d'un
tirage de dé.
e Lorsque E ={0,1}, on peut penser 3 X comme le résultat d'un tirage

a pile ou face.
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Introduction aux probabilités

Exemple

E={0,1}, et

w(@)=0, p{lt=p, p{0}=1-p, et p{0,1}=1,

ou p€[0,1] est un paramétre.

Si X est une variable aléatoire de loi y, alors

P(X=1)=p{l}=p et P(X=0)=p{0}=1-p.

On dit que X est de loi de Bernoulli de paramétre p.

On peut penser 3 X comme le résultat d'un tirage a pile ou face, avec une
piéce qui tombe sur pile avec probabilité p, et sur face avec probabilité
1-p. (Lorsque p = 1/2, on retrouve |'exemple précédent.)
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Introduction aux probabilités

Indépendance

E est un ensemble fini, et

B
wu(B) = % pour tout B c E? = {(x1,x2) ; x1,x € E}.

Si (X1, X2) est une variable aléatoire de loi p, alors pour tous By, By c E,
on a
P(Xl € Bl ; X2 € Bz) = P((Xl,Xg) € Bl X Bg)

= p(B1 x B2)
_ #B1-#B>
-

On dit que les variables aléatoires Xj et X5 sont indépendantes.

= P(Xl € Bl) -P(Xg € Bg).
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Introduction aux probabilités

Suites de variables aléatoires indépendantes

Pour n'importe quelle fonction p: B c E — u(B) € [0,1] qui vérifie :
e u(@)=0et u(E)=1,

e Si By, B, c E sont disjoints, alors

(Bru Ba) = u(B1) + pu(Bz),

on peut construire une suite (X1, Xa,...) de variables aléatoires
indépendantes de loi y, i.e, telles que P(X, € B) = u(B) pour tout B c E.
On a alors, pour tous By,...,B,cE,

P(X1€B1;...; XpeBy)=P(X1€B1)-...-P(X, € By)
— 1(By) .- u(By).
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Introduction aux probabilités

Exemple
E={0,1}, et

w@)=0, p{l}=p, p{0}=1-p, et p{0,1}=1,

ot p €[0,1] est un paramétre.

Si (X1, Xa,...) est une suite de variables aléatoires indépendantes de loi ,
i.e, de loi de Bernoulli de paramétre p, alors on peut penser a (X1, Xa,...)
comme le résultat d'une infinité de tirages a pile ou face, avec une piéce
qui tombe sur pile avec probabilité p, et sur face avec probabilité 1 — p.
On a, par exemple :

P(X1=1;...; Xp,=1)=P(Xy=1)-...-P(X, =1)
=p-....p=p".
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Introduction aux probabilités

Des questions?
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Percolation par arétes dans z?

@ Percolation par arétes dans Z¢
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Percolation par arétes dans z?

Le modele
On se place sur le réseau hypercubique Z9, ou d € N*.
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Percolation par arétes dans z?

Le modéle

Pour chaque aréte e de Z9, on garde e avec probabilité p, et on I'enléve

avec probabilité 1 — p, ot p € [0,1] est un paramétre du modéle, et ce
indépendamment des autres arétes.

G. Blanc (LMO, Univ. Paris-Saclay)
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Percolation par arétes dans z?

Le modéle

Pour chaque aréte e de Z9, on garde e avec probabilité p, et on I'enléve

avec probabilité 1 — p, ot p € [0,1] est un paramétre du modéle, et ce
indépendamment des autres arétes.

G. Blanc (LMO, Univ. Paris-Saclay)
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Percolation par arétes dans z?

Le modéle

Formellement, on se donne une famille (Xe, e aréte de Zd) de variables
aléatoires indépendantes a valeurs dans {0,1}, de loi donnée par

Pp(Xe=1)=p et Pp(Xe=0)=1-p.

Pour chaque aréte e de Z9, on garde e si X. = 1, et on |'enléve si X, = 0.
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Percolation par arétes dans z?

Le modéle

Formellement, on se donne une famille (Xe, e aréte de Zd) de variables
aléatoires indépendantes a valeurs dans {0,1}, de loi donnée par

Pp(Xe=1)=p et Pp(Xe=0)=1-p.

Pour chaque aréte e de Z9, on garde e si X. = 1, et on |'enléve si X, = 0.

Modéle introduit par Broadbent et Hammersley en 1957.
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Percolation par arétes dans z?

La question

Intuitivement, plus p est grand, plus la composante connexe de |'origine a

de chances d'étre grande.

(0, 1)

(0,0)[(1,0

p=1/2

G. Blanc (LMO, Univ. Paris-Saclay)

)
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(0,1)

(0,0)1(1,0)

p=2/3
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Percolation par arétes dans z?

Le modéle

Questions(s) : en fonction du paramétre p, existe-t-il une composante
connexe infinie?
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Percolation par arétes dans z?

Le modéle

Questions(s) : en fonction du paramétre p, existe-t-il une composante
connexe infinie? Quelle est la probabilité

6(p) = Po(0 +> o0)

que la composante connexe de |'origine soit infinie ?

G. Blanc (LMO, Univ. Paris-Saclay)
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Percolation par arétes dans z?

Le modéle

Questions(s) : en fonction du paramétre p, existe-t-il une composante
connexe infinie? Quelle est la probabilité

6(p) = Po(0 +> o0)

que la composante connexe de |'origine soit infinie ?
Proposition

Pour tout p€[0,1], on a

IP, (il existe une composante connexe infinie) € {0,1}.

De plus,

[P, (il existe une composante connexe infinie) =1 < 6(p) > 0.

G. Blanc (LMO, Univ. Paris-Saclay) Percolation et géométrie aléatoire
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Percolation par arétes dans z?

Paramétre critique et transition de phase
La fonction 6 : p € [0,1] = IP,(0 <> o) est croissante, et on a

0(0)=0 et 6(1)=1.
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Percolation par arétes dans z?

Paramétre critique et transition de phase
La fonction 6 : p € [0,1] = IP,(0 <> o) est croissante, et on a
0(0)=0 et 6(1)=1.

On a donc le diagramme suivant :

ol
pc =inf{pe[0,1]:6(p)>0}.
est le paramétre critique. On dit que le modéle présente une transition de
phase lorsque p. € ]0, 1].
Percolation et géométrie aléatoire 7 day 18 /38



lecasd =1

Proposition

Lorsque d =1, on a p. = 1. On a donc, pour tout p € [0, 1],

P, (il existe une composante connexe infinie) = 0.
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lecasd =1

Proposition

Lorsque d =1, on a p. = 1. On a donc, pour tout p € [0, 1],

P, (il existe une composante connexe infinie) = 0.

Idée.
Soit p € [0,1[. Montrons que f(p) =0. On a

0(p) = Pp(0 < )
<Pp(0 < n) +P,(0 < —n)
Z2.By(0 < ),

et ce quel que soit neN.
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lecasd =1

Xop=1 Xo1n=1

PP(O<—> n) ZIP)(X()’l =1;...; Xo-1n = 1)
“P(Xo1=1)...-P(Xp1n= 1)
:p~"‘-p

=p" — 0.

n—oo

On a donc 6(p) = 0. O
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Percolation par arétes dans zd

Simulations en dimension d =2
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Percolation par arétes dans z?

Le résultat

Théoréme
Lorsque d > 2, on a pc € ]0,1[. On a donc :
e pour tout p € [0, pc|,

P, (il existe une composante connexe infinie) = 0,
e pour tout p € |pc,1],

IP, (il existe une composante connexe infinie) = 1.

On peut méme montrer que pour tout p € [0,1], on a

P, (il existe au moins deux composantes connexes infinies) = 0.
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Percolation par arétes dans z?

La grosse question

Théoréme
Lorsque d =2, on a p. =1/2, et 6(1/2) = 0. J

0(p) = Pp(0 < o0)

Lorsque d > 3, on ne sait pas calculer p.. On conjecture que 6(p.) =0,
mais on ne sait pas le démontrer pour d = 3.
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Percolation de premier passage

© Percolation de premier passage
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Percolation de premier passage

Le modéle

A chaque aréte e de Z9, on attribue un temps de passage aléatoire
Te € [0,00], et ce indépendamment des autres arétes.

G. Blanc (LMO, Univ. Paris-Saclay) Percolation et géométrie aléatoire 7 day 25 /38



Percolation de premier passage

Le modéle

A chaque aréte e de Z9, on attribue un temps de passage aléatoire

Te € [0, 0], et ce indépendamment des autres arétes.

019 026 021 031

019}

0.78 |

0.89 !

0.64

0.00 }

012 046 [0.28 (017 [0.25 [o.52
_______ 0.75 ] 015 [ 088 | 0.97 | 067 | ..
053 078 [0.62 [0.10 [o.97 [o.07
_______ 0.64 ] 088 | 070 | 047 [ 044 | .
050 0.09 [0.67 [0.28 [o.66 [o.62
_______ 0.92 ] 094078 ) 065]033] .
(0,0) |(1,0)
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Percolation de premier passage

Le modéle

A chaque chemin = (ey,...,e,), on attribue le temps de trajet

G. Blanc (LM

019 026 0.21

T(y)=Te+...+ T¢

N

Univ. Paris-Saclay)

______ 019} 0.78 3 089} 0.64 } 0.00 .
0.12 1046 0.28 [0.17 ]0.25 ]0.52
______ 0751 015 ] 088 ] 097 | 067 | .
0.53 10.78 10.62 [0.10 |0.97
______ 064 ] 08 | 070 [ 047 04a |
0.50 [0.09 [0.67 10.28 ]0.66
______ 0.92 1 094 | 075 | 0.60 |
0.43 (0,0){(1,0)
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Percolation de premier passage

Le modéle

Pour tous x, y € Z9, on pose

T(x,y) = inf T(v).

7y chemin de x a y

Intuitivement, c'est le temps de trajet optimal de x a y.
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Percolation de premier passage

Le modéle

Pour tous x, y € Z9, on pose

T(x,y) = inf , T(v).

7 chemin de x a

Intuitivement, c'est le temps de trajet optimal de x a y.

019 026 0.21

0

G. Blanc (LMO, Univ. Paris-Saclay)

0.19 ; 0.78 : 0.89 ; 0.64 ; 0.00

0.12 1046 (0.28 ]0.17 |0.25 [0.52
0.75 | 0.15 | 0.88 ] 0.97 | 0.67

0.53 |0.78 [0.62 ]0.10 0.97
0.64 | 0.88 | 0.70 | 047 | 0.44

0.50 10.09 [0.67 ]0.28 0.66 [0.62
0.92 ] 094 | 078 ] 0.65] 0.33

(0,0){(1,0)
0.31 0.43
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Percolation de premier passage

Le modéle

Modele introduit par Hammersley et Welsh en 1965.
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Percolation de premier passage

Le modéle

Modele introduit par Hammersley et Welsh en 1965.

Question(s) : a quoi ressemble
{xe Z7: T(0,x) < t}

pour t grand ?
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Percolation de premier passage

Le modéle

Modele introduit par Hammersley et Welsh en 1965.

Question(s) : a quoi ressemble
{xe Z7: T(0,x) < t}

pour t grand ? Comment se comporte T (0, ne;) pour n grand, ou
e1 = (1,0,...,0)?
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ercolation de premier passage

Simulation en dimension d =2

G. Blanc (LMO, Univ. Pari
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lecasd =1

Proposition

Lorsque d =1, on a

n n—oo0

E[Te] = 17

ot E[T,] est I'espérance de la variable aléatoire T.
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Percolation de premier passage

lecasd=1
Idée
TOJ 711/,—1.7/,
0 n

On a

T(O, n) B T071 +...+ Tnfl,n

n n ’

ou les variables aléatoires Tq1,..., Th-1,, sont indépendantes et de méme
loi que Te. Le résultat découle de la loi des grands nombres. Ol

4
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Percolation de premier passage

Le résultat

Théoréme

Lorsque d > 2, il existe une constante «y € [0, E[ T.]] telle que

P(M_w):l_

n n—oo
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Percolation de premier passage

Le résultat

Théoréme

Lorsque d > 2, il existe une constante «y € [0, E[ T.]] telle que

P(M_w):l_

n n—oo

Idée.

Le résultat découle de la propriété de sous-additivité suivante : pour tous
m,neN, on a

T(0,(m+n)e;) < T(0,mer)+ T(mey,(m+n)ep).
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Percolation de premier passage

Sous-additivité

0 mey (m+mn)ep

Pour tous chemins 71 de 0 @ me; et 72 de me; a3 (m+ n)ey, on a
T,(m+n)er) < T(y)+ T(y2).
On en déduit que

T(0,(m+n)e;) < T(0,mer)+ T(mey,(m+n)ey).

O

v
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Géométrie aléatoire avec des processus de Poisson de routes

© Géométrie aléatoire avec des processus de Poisson de routes
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Géométrie aléatoire avec des processus de Poisson de routes

Processus de Poisson de routes

Une route est un couple (¢, v), ott £ c R? est une droite (affine), et v e R:
est la limitation de vitesse sur /.
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Géométrie aléatoire avec des processus de Poisson de routes

Le modéle

On se donne un processus de Poisson de routes dans RY.
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Géométrie aléatoire avec des processus de Poisson de routes

Le modéle

On se donne un processus de Poisson de routes dans RY.

On roule sur le réseau de routes aléatoire engendré par le processus, en
respectant les limitations de vitesse : & chaque chemin ~, on associe son
temps de trajet T (7).
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Géométrie aléatoire avec des processus de Poisson de routes

Le modéle

On se donne un processus de Poisson de routes dans RY.

On roule sur le réseau de routes aléatoire engendré par le processus, en
respectant les limitations de vitesse : & chaque chemin ~, on associe son
temps de trajet T (7).

Pour tous x,y € R?, on note

T(x,y)= inf T(v).

7 chemin de x a y

Intuitivement, c'est le temps de trajet optimal de x 3 y.
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Géométrie aléatoire avec des processus de Poisson de routes

Le modéle

On se donne un processus de Poisson de routes dans RY.

On roule sur le réseau de routes aléatoire engendré par le processus, en
respectant les limitations de vitesse : & chaque chemin ~, on associe son
temps de trajet T (7).

Pour tous x,y € R?, on note

T(x,y)= inf T(v).

7 chemin de x a y

Intuitivement, c'est le temps de trajet optimal de x 3 y.

Modeéle introduit par Aldous en 2012.
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Géométrie aléatoire avec des processus de Poisson de routes

Simulations en dimension d =2

=™
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Géométrie aléatoire avec des processus de Poisson de routes

Simulations en dimension d =2

e

"“5

%

. 4

”

Merci de votre attention!
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Overview

Phénomeénes perceptuels
m Les lois de la Gestalt

Le cortex cérébral et les vois visuelle primaires
m Cortex visuel primaire

Modeles neurogéométriques de la perception visuelle des contours
m Le modéle Citti-Sarti

Mathématiques dans la perception visuelle des contours



Images et perception

Une image est composée d'un ensemble de points et constitue une donnée non structurée.

Comment percevons-nous les objets et les figures?
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Images et perception

Une image est composée d'un ensemble de points et constitue une donnée non structurée.
Comment percevons-nous les objets et les figures?

Quelques remarques:

m La perception est une tache globale :
I'ensemble est différent de la somme
des parties individuelles.
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Images et perception

Une image est composée d'un ensemble de points et constitue une donnée non structurée.
Comment percevons-nous les objets et les figures?

Quelques remarques:

m La perception est une tache globale : ”

I'ensemble est différent de la somme

des parties individuelles.

m L'image percue n'est pas la vraie.
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Images et perception

Une image est composée d'un ensemble de points et constitue une donnée non structurée.
Comment percevons-nous les objets et les figures?

Quelques remarques :

m La perception est une tache globale :
I'ensemble est différent de la somme
des parties individuelles.

m L'image percue n’est pas la vraie.

m L'image pergue n’est pas unique.
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Les lois de la Gestalt sur I'organisation de la perception

Théorie de la Gestalt ("forme” en allemand): le stimulus percu est quelque chose de plus
que la simple somme de toutes ses parties [Kof35, Koh29, Wer23].

Quelques lois qui guident notre perception visuelle:

Bonne
Proximité Similarité continuation

o0 o0 oo
oo o0 oo ©0O0O0OO0
oo o0 oo o000
oo o0 oo

o0 00 o0 (CHCRONG)

Cléture Symétrie

N Y
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Systeme visuel

Le systeme visuel est a la base de la perception et implique plusieurs organes dans le
traitement du signal visuel.

La voie visuelle décrit les aires corticales impliquées, qui comprennent un vaste réseau de
neurones interconnectés, travaillant ensemble pour traiter I'information recue.

Mathématiques dans la perception visuelle des contours



De la rétine au V1

Les mécanismes neuronaux impliqués dans le systeme visuel prennent naissance dans la
rétine et se propagent. Nous nous concentrons sur le cortex visuelle primaire.

Rétine

wotsge

m Transduction: |'image se
transforme en signal électrique.

m Transmission du signal. f §—
Y
LGN
(Lateral Geniculate Nucleus) Dorsal -
P (parietal) g N
/ pathway MT ~ 3
LGN \
S}
Y 4, @ :;\\kw
Vo
V1 / > /
. . . Retina Ventral V2
(Cortex visuel primaire) ' (temporall
e . . . A ¥ pathway
Chargé de traiter les informations
visuelles.
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Cellules simples de V1

m L'un des principaux types de neurones dans V1
m Sensible a I'orientation : forte réponse aux lignes et aux bords avec des orientations
spécifiques dans le champ visuel.
STIMULUS RESPONSE TUNING CURVE

Stimulus Stimulus Stimulus
off on off

—

Cell's response

=N | 7 =

' I Orientation of bar
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Profil réceptif des cellules simples de V1

Il représente la réponse d'une cellule en fonction de la présence d'un stimulus sur la rétine.
Images from [DAOF95, Wan95].

SIMPLE

3

+ | -

y (deg)

0
0 x(deg) 5

Cette réponse est formalisée mathématiquement en termes de filtres de Gabor:

J C RETINA c‘ (
Gabor patch

e J — R

IICEER 0 m
(z,y) +— e o -sin(27w fz + ¢)

Les lignes de niveau de ¢ (patch de Gabor) indiquent la direction preferentlelle et sont
conformes a la mesure des profils.
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Organisation en colonnes des cellules simples de V1

Hubel-Wiesel [HW62]: les cellules simples sélectives de |'orientation sont disposées en
colonnes dans le cortex visuel primaire. Précisément:

- orientation préférentielle constante perpendiculairement a la surface corticale

- orientation préférentielle varie progressivement dans les directions paralléles a la
surface, de telle sorte que différentes colonnes sont sensibles a différentes orientations
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La structure anatomique reflete les propriétés fonctionnelles des cellules simples :
m Chaque point de la rétine est lié a une structure colonnaire dans V1.

m Cela favorise le traitement des informations liées a I'orientation.
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Connectivité corticale en V1

Cartes d'orientation [MAHG93, BZSF97] : représentent la disposition spatiale des
neurones dans V1 en fonction de leurs préférences d'orientation. La préférence
d’orientation d'un point a I'autre varie progressivement.

Orientation maps

Long-range connectivity

Les connexions sont mesurées a I'aide d'un traceur. Elles sont:
m isotropes dans le voisinage du point d'injection.

m anisotropes (fortement directionnelles) entre des neurones distants.

M. Virginia Bolelli
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Modeles mathématiques pour la vision

OBJECTIF : comprendre comment on intégre les informations perceptuelles et
neuronales pour identifier les contours.

Seconde moitié de 1900 :
m Koenderink-van Doorn [KvD76, KvD87]
= Mumford [Mum94]
m Hoffmann [Hof89]

Petitot-Tondut [PT99]: neurogéométrie de la vision.
Utiliser les instruments de la géométrie différentielle et de la théorie des groupes pour expliquer le

comportement du cortex visuel a partir de son architecture fonctionnelle.

Développement apres 2000 :
m Zucker [BSZ04]
m Citti-Sarti [CS06], Sarti-Citti-Petitot [SCP07]
m Duits van Almsick Franchen, ter Haar Roomeny

m ...et bien d'autres !

M. Virginia Bolelli Mathématiques dans la perception visuelle des contours March 14th, 2024



Le modele Citti-Sarti dans R2 x S!

efinition

L'espace perceptif, c'est-a-dire la représentation mentale de |'information sensorielle, est
défini dans R? x S'.

Columnar organization of V1

0

S1

\\\\-,\/ :

b0oss0g

h00sang

2008800
DONAMN LA 0
J00aMPse

Y

\]

N

= Etant donné un point p = (z,0) € R? x S, celui-ci est identifié 3 une cellule simple
de V1 sélective de I'orientation 6.
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Courbes de connectivité en R? x St

: 2, ol s oy ONY®
Soit v : R — R® X S* une courbe paramétrique. Le

vecteur tangent est donné par /' (t) s'il existe et si

v'(t) # 0.

.
Il représente la direction locale de la courbe.
P
Privileged direction in V1

Famille de courbes admissibles dans R? x S':

-

— - -

On considere v : R — R? x S! t.q. ~:,‘X‘1-::.‘ -
, -

On peut relier toutes les paires de points en utilisant ces deux directions !

M. Virginia Bolelli
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Courbes de connectivité en R? x St

/
Definition , v V(1)

Soit 7 : R — R? x S' une courbe paramétrique. Le
vecteur tangent est donné par /' (t) s'il existe et si
7' (t) # 0.

Il représente la direction locale de la courbe.

Famille de courbes admissibles dans R? x S':
On considere v : R — R? x S! t.q.
'y'(t) = X1 + kXs.

On peut relier toutes les paires de points en utilisant ces deux directions !

March 14th, 2024 12 /20
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La loi Gestalt de la bonne continuation

"Les éléments alignés (ou ayant un alignement comparable) tendent a former une courbe
continue. Les gens ont tendance a percevoir les objets alignés comme formant des
contours lisses et ininterrompus”.

() (b) (c)

L~ Lo

1Iu~> ) loolc.s like Llnu ..not llke I.th )

Comment le systéme visuel encode la bonne continuation du contour?
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Expérience psychophysique proposée par Field, Hayes et Hess

L’expérience proposée dans [FHH93] implique la présentation d'une image contenant des
patchs de Gabor alignés, disposés en forme de chemin, superposée a un grand nombre de
patchs de Gabor distribués aléatoirement.

Le but de I'expérience était de tester la capacité du sujet a détecter les unités perceptives
présentes dans le stimulus visuel:
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Expérience psychophysique proposée par Field, Hayes et Hess

L’expérience proposée dans [FHH93] implique la présentation d'une image contenant des
patchs de Gabor alignés, disposés en forme de chemin, superposée a un grand nombre de
patchs de Gabor distribués aléatoirement.

Le but de I'expérience était de tester la capacité du sujet a détecter les unités perceptives
présentes dans le stimulus visuel:

m changement de I'orientation des patchs de Gabor formant le chemin détruit la
perception.
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Expérience psychophysique proposée par Field, Hayes et Hess

Champs d'associations: description du schéma permettant de déterminer quels éléments
(patchs de Gabor) peuvent &tre associés a la méme unité perceptive en termes
d’orientation et de position. Il y a une forte corrélation entre:

m éléments alignés ;

m éléments co-circulaires.

= L’ensemble des courbes proposées pour décrire
les champs d'associations est bien formalisé par
la famille des courbes admissibles dans R? x S*.
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Distance induite par les courbes

Une distance d sur un ensemble X est une fonction d : X x X — R qui satisfait les
propriétés suivantes, pour tout z,y, z dans X :

dz,y) > 0etd(z,y) =0 <= z=y
d(z,y) = d(y,z) (symétrie)
d(z,y) < d(z,z) + d(z,y) (inégalité triangulaire)

On considere, pour p, ¢ € R? x S*:

d(p, q) == inf {£(~y) | 7y est une courbe reliant p et q}
Y

Cette distance dépend de : N
m Les courbes reliant les points p et q.

m La notion de longueur ¢
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Spheéres induites par la distance

On considére la sphere de rayon r centrée en x :

Sa(z,r) ={y € X | d(z,y) =7r}.

(I'ensemble des points qui sont a distance r de z.)

Les courbes qui définissent la distance affectent la forme des spheres :

R? R? x S* R2-projection

Spheére euclidienne Champ d'association sphére

La distance mesure la corrélation entre les points, qui peuvent étre regroupés en unités
perceptives.
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L'individualisation des contours perceptifs

Algorithme proposé par [SC15] :

Image in R? x S!

#{ensemble de points de I'image} = 120.

Pour chaque couple (, j) de points d'image

avec i,j = 1...120, on définit: RS

A(i, ) = e 4007 L

A est une mesure de I'affinité entre les
points.

M. Virginia Bolelli
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L'individualisation des contours perceptifs

Algorithme proposé par [SC15] :

Image in R? x St

#{ensemble de points de I'image} = 120.

Pour chaque couple (i, j) de points d'image

aveci,j = 1...120, on définit: RN

A, g) = e Ha)?, T

A est une mesure de I'affinité entre les

points.

Les points les plus affiné sont indiqués en
rouge. lls détectent le contour
bidimensionnel percu.

M. Virginia Bolelli
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L'individualisation des contours perceptifs

Stimulus avec 2 unités perceptives.

2 1
Image in R* X S 1st percept 2nd percept
s < : — <
N \ J g ' \ ¥ 4 ’ \ i ’
N i . 3 3 N \ ! N
hd g ‘. hs g h™ “ g ‘.
S Nen o ;) S N
'\\’ - -~ 7 ’\\( v - 7 =t -~ 7
. NP AN .
R . ¢ . .
N NS - IERA NN = " ' =
'~ [ A 1y S !
LR N RN NN SR N NN LIRS PR
= a8 N - P o 8 - < W NN
4 7= ~ ~ -7 ~ - ’ ., . ~
- N - N -~ t - Nos
oy =5, f . NS ’ 5 . NS ’ - ~ . b 4
- ' N ' N - . s
' . .
- L g - I3
e e N N -~ LT
. > N v - = N v - \ N v
e R Ve Lo N

m Individualisation des 2 contours de I'image.
m La corrélation la plus forte découle de I'unité perceptive courbe.

m Les éléments disposés en lignes droites sont également corrélés : ils forment la
deuxieéme unité perceptive.
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L'individualisation des contours perceptifs

Triangle de Kanisza (August Kanisza 1858).

Image in R? x St
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m Les éléments les plus fortement corrélés sont représentés en rouge. lls correspondent

au triangle de

I'image Kanisza.

m |l existe une deuxieéme corrélation, plus faible (non illustrée), qui permet de récupérer

les cercles.

m Cela montre que le triangle est plus saillant que les cercles, ce qui confirme qu'il
s'agit d'un bon modele pour les mécanismes de perception visuelle.
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Conclusions

% Phénomenes perceptuels
- Les loi de la Gestalt sur |'organisation de la perception
* Systeme visuel
- Architecture fonctionnelle du cortex visuel primaire pour les cellules simples selective
de |'orientation.
% Modele neurogéométrique proposé par Citti-Sarti in R? x S
- La perception des stimuli visuels dérive d’une notion de distance basée sur des courbes

spécifiques. Ces courbes sont dirigées par les cellules simples de V1, et les informations
qu’elles véhiculent sont liées a la loi de bonne continuation de Gestalt.
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MERCI POUR VOTRE ATTENTION!
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